Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Treatment of chemotherapy-induced cachexia with BST204: a multimodal validation study.

Tytuł:
Treatment of chemotherapy-induced cachexia with BST204: a multimodal validation study.
Autorzy:
Kim HJ; Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Kim SJ; Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Woo CW; MR Core Laboratory, Asan Medical Center, Asan Medical Institute of Convergence and Technology,, Seoul, Republic of Korea.
Kim ST; MR Core Laboratory, Asan Medical Center, Asan Medical Institute of Convergence and Technology,, Seoul, Republic of Korea.
Im M; GREEN CROSS Wellbeing Co., Ltd, Seongnam, Republic of Korea.
Park SK; GREEN CROSS Wellbeing Co., Ltd, Seongnam, Republic of Korea.
Kim JY; GREEN CROSS Wellbeing Co., Ltd, Seongnam, Republic of Korea.
Yoo HJ; Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea. .
Woo DC; Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence and Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea. .; MR Core Laboratory, Asan Medical Center, Asan Medical Institute of Convergence and Technology,, Seoul, Republic of Korea. .
Kim JK; Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. .
Źródło:
Metabolomics : Official journal of the Metabolomic Society [Metabolomics] 2021 Mar 18; Vol. 17 (4), pp. 36. Date of Electronic Publication: 2021 Mar 18.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: New York : Springer, c2006-
MeSH Terms:
Drug Therapy*
Drug-Related Side Effects and Adverse Reactions*
Cachexia/*chemically induced
Cachexia/*drug therapy
Plant Extracts/*pharmacology
Animals ; Cell Line, Tumor ; Colonic Neoplasms/drug therapy ; Colonic Neoplasms/pathology ; Disease Models, Animal ; Glucose/metabolism ; Inflammation ; Interleukin-6/blood ; Male ; Metabolomics ; Mice ; Mice, Inbred BALB C ; Oxidative Stress
References:
Allu, P. K., Marada, A., Boggula, Y., Karri, S., Krishnamoorthy, T., & Sepuri, N. B. (2015). Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress. Molecular Biology of the Cell, 26, 406–419. (PMID: 25428986431073310.1091/mbc.E14-09-1371)
Aoyagi, T., Terracina, K. P., Raza, A., Matsubara, H., & Takabe, K. (2015). Cancer cachexia, mechanism and treatment. World Journal of Gastrointestinal Oncology, 7, 17–29. (PMID: 25897346439889210.4251/wjgo.v7.i4.17)
Aquila, G., Re Cecconi, A. D., Brault, J. J., Corli, O., & Piccirillo, R. (2020). Nutraceuticals and exercise against muscle wasting during cancer cachexia. Cells, 9(12), 2536. (PMID: 776092610.3390/cells9122536)
Ballarò, R., Penna, F., Pin, F., Gómez-Cabrera, M. C., Viña, J., & Costelli, P. (2019). Moderate exercise improves experimental cancer cachexia by modulating the redox homeostasis. Cancers (Basel), 11(3), 285. (PMID: 10.3390/cancers11030285)
Barreto, R., Mandili, G., Witzmann, F. A., Novelli, F., Zimmers, T. A., & Bonetto, A. (2016). Cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. Frontiers in Physiology, 7, 472. (PMID: 27807421507012310.3389/fphys.2016.00472)
Barreto, R., Waning, D. L., Gao, H., Liu, Y., Zimmers, T. A., & Bonetto, A. (2016). Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget, 7, 43442–43460. (PMID: 27259276519003610.18632/oncotarget.9779)
Benson, A. B., 3rd., Venook, A. P., Cederquist, L., Chan, E., Chen, Y. J., Cooper, H. S., Deming, D., Engstrom, P. F., Enzinger, P. C., Fichera, A., Grem, J. L., Grothey, A., Hochster, H. S., Hoffe, S., Hunt, S., Kamel, A., Kirilcuk, N., Krishnamurthi, S., Messersmith, W. A., & Freedman-Cass, D. (2017). Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network, 15, 370–398. (PMID: 2827503710.6004/jnccn.2017.003628275037)
Bonetto, A., Aydogdu, T., Jin, X., Zhang, Z., Zhan, R., Puzis, L., Koniaris, L. G., & Zimmers, T. A. (2012). JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. American journal of physiology, 303, E410–E421. (PMID: 2266924222669242)
Branco, A., Yoshikawa, F. S. Y., Pietrobon, A. J., & Sato, M. N. (2018). Role of histamine in modulating the immune response and inflammation. Mediators of Inflammation, 2018, 9524075. (PMID: 30224900612979710.1155/2018/9524075)
Braun, T. P., Szumowski, M., Levasseur, P. R., Grossberg, A. J., Zhu, X., Agarwal, A., & Marks, D. L. (2014). Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS ONE, 9, e106489. (PMID: 25254959417781510.1371/journal.pone.0106489)
Le Bricon, T., Gugins, S., Cynober, L., & Baracos, V. E. (1995). Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats. Metabolism, 44, 1340–1348. (PMID: 747629510.1016/0026-0495(95)90040-3)
Eskiler, G. G., Bezdegumeli, E., Ozman, Z., Ozkan, A. D., Bilir, C., Kucukakca, B. N., Ince, M. N., Men, A. Y., Aktas, O., Horoz, Y. E., Akpinar, D., Genc, I., & Kaleli, S. (2019). IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratislavske Lekarske Listy, 66, 819–826. (PMID: 31747761)
Fu, W., Xu, H., Yu, X., Lyu, C., Tian, Y., Guo, M., Sun, J., & Sui, D.J.R.a. . (2018). 20 (S)-Ginsenoside Rg2 attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation: Role of SIRT1. RSC Advances, 8(42), 23947–23962. (PMID: 10.1039/C8RA02316F)
Hofseth, L. J., & Wargovich, M. J. (2007). Inflammation, Cancer, and Targets of Ginseng. The Journal of Nutrition, 137, 183S-185S. (PMID: 1718282310.1093/jn/137.1.183S)
Jourdain, M., Melly, S., Summermatter, S., & Hatakeyama, S. (2018). Mouse models of cancer-induced cachexia: Hind limb muscle mass and evoked force as readouts. Biochemical and Biophysical Research Communications, 503, 2415–2420. (PMID: 2996962910.1016/j.bbrc.2018.06.170)
Kumar Srivastava, A., Khare, P., Kumar Nagar, H., Raghuwanshi, N., & Srivastava, R. (2016). Hydroxyproline: A potential biochemical marker and its role in the pathogenesis of different diseases. Current Protein & Peptide Science, 17, 596–602. (PMID: 10.2174/1389203717666151201192247)
Le Lay, S., Simard, G., Martinez, M. C., & Andriantsitohaina, R. (2014). Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxidative Medicine and Cellular Longevity, 2014, 908539. (PMID: 251438004131099)
Lee, S. M. (2014). Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: Inhibition of TNF-alpha-induced NF-kappaB, COX-2, and iNOS transcriptional expression. Phytotherapy Research, 28, 1893–1896. (PMID: 2504211210.1002/ptr.5203)
Li, W., Yan, M. H., Liu, Y., Liu, Z., Wang, Z., Chen, C., Zhang, J., & Sun, Y. S. (2016). Ginsenoside Rg5 Ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients, 8(9), 566. (PMID: 503755110.3390/nu8090566)
Lin, X. Y., & Chen, S. Z. (2017). Calpain inhibitors ameliorate muscle wasting in a cachectic mouse model bearing CT26 colorectal adenocarcinoma. Oncology Reports, 37, 1601–1610. (PMID: 2811235710.3892/or.2017.539628112357)
Luo, L., & Liu, M. (2016). Adipose tissue in control of metabolism. Journal of Endocrinology, 231, R77-r99. (PMID: 10.1530/JOE-16-0211)
Musarò, A. (2014). The basis of muscle regeneration. Advances in Biology, 2014, 612471. (PMID: 10.1155/2014/612471)
Niu, M., Song, S., Su, Z., Wei, L., Li, L., Pu, W., Zhao, C., Ding, Y., Cao, W., Gao, Q., & Wang, H. (2021). Inhibition of HSP90 reversed STAT3 mediated muscle wasting induced by cancer cachexia. Biorxiv. https://doi.org/10.1101/2021.01.27.428420. (PMID: 10.1101/2021.01.27.428420)
Parasuraman, S., Raveendran, R., & Kesavan, R. (2010). Blood sample collection in small laboratory animals. Journal of Pharmacology and Pharmacotherapeutics, 1, 87–93. (PMID: 2135061610.4103/0976-500X.7235021350616)
Park, H. J., Shim, H. S., Kim, J. Y., Kim, J. Y., Park, S. K., & Shim, I. (2015). Ginseng purified dry extract, bst204, improved cancer chemotherapy-related fatigue and toxicity in mice. Evidence Based Complementary and Alternative Medicine, 2015, 197459. (PMID: 259451054405287)
Park, M. W., Ha, J., & Chung, S. H. (2008). 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biological &/and Pharmaceutical Bulletin, 31, 748–751. (PMID: 10.1248/bpb.31.748)
Pin, F., Barreto, R., Couch, M. E., Bonetto, A., & O’Connell, T. M. (2019). Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. Journal of Cachexia Sarcopenia and Muscle, 10, 140–154. (PMID: 10.1002/jcsm.12360)
Pritt, M. L., Hall, D. G., Recknor, J., Credille, K. M., Brown, D. D., Yumibe, N. P., Schultze, A. E., & Watson, D. E. (2008). Fabp3 as a biomarker of skeletal muscle toxicity in the rat: Comparison with conventional biomarkers. Toxicological Sciences, 103, 382–396. (PMID: 1830869910.1093/toxsci/kfn04218308699)
Qi, F., Zheng, Z., Yan, Q., Liu, J., Chen, Y., & Zhang, G. (2018). Comparisons of efficacy, safety, and cost of chemotherapy regimens FOLFOX4 and FOLFIRINOX in rectal cancer: A randomized, multicenter study. Medical Science Monitor, 24, 1970–1979. (PMID: 29614063589636310.12659/MSM.906934)
Quan-Jun, Y., Yan, H., Yong-Long, H., Li-Li, W., Jie, L., Jin-Lu, H., Jin, L., Peng-Guo, C., Run, G., & Cheng, G. (2017). Selumetinib attenuates skeletal muscle wasting in murine cachexia model through ERK inhibition and AKT activation. Molecular Cancer Therapeutics, 16, 334–343. (PMID: 2759952510.1158/1535-7163.MCT-16-032427599525)
Radaelli, G., Piccirillo, A., Birolo, M., Bertotto, D., Gratta, F., Ballarin, C., Vascellari, M., Xiccato, G., & Trocino, A. (2017). Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction. Poultry Science, 96, 309–319. (PMID: 2756672910.3382/ps/pew27027566729)
Rittig, N., Bach, E., Thomsen, H. H., Pedersen, S. B., Nielsen, T. S., Jørgensen, J. O., Jessen, N., & Møller, N. (2016). Regulation of lipolysis and adipose tissue signaling during acute endotoxin-induced inflammation: A human randomized crossover trial. PLoS ONE, 11, e0162167–e0162167. (PMID: 27627109502311610.1371/journal.pone.0162167)
Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B., & Sandri, M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 280, 4294–4314. (PMID: 10.1111/febs.12253)
Seo, J. Y., Lee, J. H., Kim, N. W., Her, E., Chang, S. H., Ko, N. Y., Yoo, Y. H., Kim, J. W., Seo, D. W., Han, J. W., Kim, Y. M., & Choi, W. S. (2005a). Effect of a fermented ginseng extract, BST204, on the expression of cyclooxygenase-2 in murine macrophages. International Immunopharmacology, 5, 929–936. (PMID: 1577812810.1016/j.intimp.2005.01.008)
Seo, J. Y., Lee, J. H., Kim, N. W., Kim, Y. J., Chang, S. H., Ko, N. Y., Her, E., Yoo, Y. H., Kim, J. W., Lee, B. Y., Lee, H. Y., Kim, Y. M., & Choi, W. S. (2005b). Inhibitory effects of a fermented ginseng extract, BST204, on the expression of inducible nitric oxide synthase and nitric oxide production in lipopolysaccharide-activated murine macrophages. Journal of Pharmacy and Pharmacology, 57, 911–918. (PMID: 1596995210.1211/0022357056497)
Shen, L., Haas, M., Wang, D. Q. H., May, A., Lo, C. C., Obici, S., Tso, P., Woods, S. C., & Liu, M. (2015). Ginsenoside Rb1 increases insulin sensitivity by activating AMP-activated protein kinase in male rats. Physiological Reports, 3, e12543. (PMID: 26359241460038710.14814/phy2.12543)
da Silva, C. G., Jarzyna, R., Specht, A., & Kaczmarek, E. (2006). Extracellular nucleotides and adenosine independently activate AMP-activated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circulation Research, 98, e39-47. (PMID: 16497986283008610.1161/01.RES.0000215436.92414.1d)
Stewart, M. D., Lopez, S., Nagandla, H., Soibam, B., Benham, A., Nguyen, J., Valenzuela, N., Wu, H. J., Burns, A. R., Rasmussen, T. L., Tucker, H. O., & Schwartz, R. J. (2016). Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Disease Models & Mechanisms, 9, 347–359. (PMID: 10.1242/dmm.022491)
Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M., Campbell, K., Cheung, E., Olin-Sandoval, V., Gruning, N. M., Kruger, A., Tauqeer Alam, M., Keller, M. A., Breitenbach, M., Brindle, K. M., Rabinowitz, J. D., & Ralser, M. (2015). The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews of the Cambridge Philosophical Society, 90, 927–963. (PMID: 10.1111/brv.12140)
Tanaka, Y., Eda, H., Fujimoto, K., Tanaka, T., Ishikawa, T., & Ishitsuka, H. (1990). Anticachectic activity of 5’-deoxy-5-fluorouridine in a murine tumor cachexia model, colon 26 adenocarcinoma. Cancer Research, 50, 4528–4532. (PMID: 16951211695121)
Tisdale, M. J., & Dhesi, J. K. (1990). Inhibition of weight loss by omega-3 fatty acids in an experimental cachexia model. Cancer Research, 50, 5022–5026. (PMID: 23791672379167)
Wang, Q., Liu, D., Song, P., & Zou, M. H. (2015). Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Frontiers in Bioscience (Landmark Ed), 20, 1116–1143. (PMID: 10.2741/4363)
Xiao, N., Yang, L. L., Yang, Y. L., Liu, L. W., Li, J., Liu, B., Liu, K., Qi, L. W., & Li, P. (2017). Ginsenoside Rg5 inhibits succinate-associated lipolysis in adipose tissue and prevents muscle insulin resistance. Frontiers in Pharmacology, 8, 43. (PMID: 282610915306250)
Xu, Q., Brabham, J. G., Zhang, S., Munster, P., Fields, K., Zhao, R. J., & Yu, H. (2005). Chinese herbal formula, Bing De Ling, enhances antitumor effects and ameliorates weight loss induced by 5-fluorouracil in the mouse CT26 tumor model. DNA and Cell Biology, 24, 470–475. (PMID: 1600851610.1089/dna.2005.24.47016008516)
Yennurajalingam, S., Tannir, N. M., Williams, J. L., Lu, Z., Hess, K. R., Frisbee-Hume, S., House, H. L., Lim, Z. D., Lim, K. H., Lopez, G., Reddy, A., Azhar, A., Wong, A., Patel, S. M., Kuban, D. A., Kaseb, A. O., Cohen, L., & Bruera, E. (2017). A double-blind, randomized, placebo-controlled trial of panax ginseng for cancer-related fatigue in patients with advanced cancer. Journal of the National Comprehensive Cancer Network, 15, 1111–1120. (PMID: 2887459610.6004/jnccn.2017.014928874596)
Contributed Indexing:
Keywords: BST204; Chemotherapy-induced cachexia; Multimodal study
Substance Nomenclature:
0 (BST204 ginseng extract)
0 (Interleukin-6)
0 (Plant Extracts)
IY9XDZ35W2 (Glucose)
Entry Date(s):
Date Created: 20210319 Date Completed: 20211018 Latest Revision: 20211018
Update Code:
20240105
DOI:
10.1007/s11306-021-01781-8
PMID:
33738589
Czasopismo naukowe
Introduction: Chemotherapy is a major etiology of cachexia. Ginseng products are known to have various anti-cachectic and health-promoting effects, such as inhibiting inflammation and promoting energy production. In particular, BST204, purified ginseng dry extract, contains multiple ginsenosides that can reduce chemotherapy-related fatigue and toxicity.
Objectives: To investigate the effects of BST204 on the alleviation of chemotherapy-induced cachexia using a multimodal approach.
Methods: In a CT26 mouse syngeneic colon cancer model, cachexia was predominantly induced by chemotherapy with 5-fluorouracil (5-FU) than by tumor growth. BST204 at a dose of 100 or 200 mg/kg was administered to 5-FU-treated mice.
Results: BST204 significantly mitigated the decrease in tumor-excluded body weight (change in 5-FU group and BST204 groups: - 13% vs. - 6% on day 7; - 30% vs. - 20% on day 11), muscle volume (- 19% vs. - 11%), and fat volume (- 91% vs. - 56%). The anti-cachectic effect of BST204 was histologically demonstrated by an improved balance between muscle regeneration and degeneration and a decrease in muscle cross-sectional area reduction.
Conclusion: Chemotherapy-induced cachexia was biochemically and metabolically characterized by activated inflammation, enhanced oxidative stress, increased protein degradation, decreased protein stabilization, reduced glucose-mediated energy production, and deactivated glucose-mediated biosynthesis. These adverse effects were significantly improved by BST204 treatment. Overall, our multimodal study demonstrated that BST204 could effectively alleviate chemotherapy-induced cachexia.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies