Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Molecular Mechanism of the ATF6α/S1P/S2P Signaling Pathway in Hippocampal Neuronal Apoptosis in SPS Rats.

Tytuł:
Molecular Mechanism of the ATF6α/S1P/S2P Signaling Pathway in Hippocampal Neuronal Apoptosis in SPS Rats.
Autorzy:
Han L; PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.; Department of Thoracic Surgery, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
Xu Y; PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
Shi Y; PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China. .
Źródło:
Journal of molecular neuroscience : MN [J Mol Neurosci] 2021 Dec; Vol. 71 (12), pp. 2487-2499. Date of Electronic Publication: 2021 Mar 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Boston : Birkhäuser [i.e. Cambridge, MA : Birkhäuser Boston, c1989-
MeSH Terms:
Apoptosis*
Activating Transcription Factor 6/*metabolism
Hippocampus/*metabolism
Proprotein Convertases/*metabolism
Serine Endopeptidases/*metabolism
Stress Disorders, Post-Traumatic/*metabolism
Activating Transcription Factor 6/genetics ; Animals ; Caspase 12/genetics ; Caspase 12/metabolism ; Endoplasmic Reticulum Stress ; Heat-Shock Proteins/genetics ; Heat-Shock Proteins/metabolism ; Hippocampus/cytology ; Male ; Memory ; Neurons/metabolism ; Proprotein Convertases/genetics ; Rats ; Rats, Wistar ; Serine Endopeptidases/genetics ; Signal Transduction ; Stress Disorders, Post-Traumatic/genetics ; Transcription Factor CHOP/genetics ; Transcription Factor CHOP/metabolism
References:
Apfel BA, Ross J, Hlavin J, Meyerhoff DJ, Metzler TJ, Marmar CR, Weiner MW, Schuff N, Neylan TC (2011) Hippocampal volume differences in Gulf War veterans with current versus lifetime posttraumatic stress disorder symptoms. Biol Psychiatry 69(6):541–548. https://doi.org/10.1016/j.biopsych.2010.09.044. (PMID: 10.1016/j.biopsych.2010.09.04421094937)
Ardic S, Gumrukcu A, Gonenc Cekic O, Erdem M, Reis Kose GD, Demir S, Kose B, Yulug E, Mentese A, Turedi S (2019) The value of endoplasmic reticulum stress markers (GRP78 and CHOP) in the diagnosis of acute mesenteric ischemia. Am J Emerg Med 37(4):596–602. https://doi.org/10.1016/j.ajem.2018.06.033. (PMID: 10.1016/j.ajem.2018.06.03329958740)
Cassimeris L, Engiles JB, Galantino-Homer H (2019) Detection of endoplasmic reticulum stress and the unfolded protein response in naturally-occurring endocrinopathic equine laminitis. BMC Vet Res 15(1):24. https://doi.org/10.1186/s12917-018-1748-x. (PMID: 10.1186/s12917-018-1748-x306304746327420)
Chen F, Jin J, Hu J, Wang Y, Ma Z, Zhang J (2019) Endoplasmic reticulum stress cooperates in silica nanoparticles-induced macrophage apoptosis via activation of CHOP-mediated apoptotic signaling pathway. Int J Mol Sci 20(23):5846. https://doi.org/10.3390/ijms20235846. (PMID: 10.3390/ijms202358466929173)
Chen X, Jiang Y, Wang J, Liu Y, Xiao M, Song C, Bai Y, Yinuo Han N, Han F (2020) Synapse impairment associated with enhanced apoptosis in post-traumatic stress disorder. Synapse 74(2):e22134. https://doi.org/10.1002/syn.22134. (PMID: 10.1002/syn.2213431562782)
Chung YW, Chung MW, Choi SK, Choi SJ, Choi SJN, Chung SY (2018) Tacrolimus-induced apoptosis is mediated by endoplasmic reticulum-derived calcium-dependent caspases-3,-12 in Jurkat cells. Transplant Proc 50(4):1172–1177. https://doi.org/10.1016/j.transproceed.2018.01.050. (PMID: 10.1016/j.transproceed.2018.01.05029731088)
Fan F, Zhang Y, Yang Y, Mo L, Liu X (2011) Symptoms of posttraumatic stress disorder, depression, and anxiety among adolescents following the 2008 Wenchuan earthquake in China. J Trauma Stress 24(1):44–53. https://doi.org/10.1002/jts.20599. (PMID: 10.1002/jts.2059921351164)
Fan H, Li M, Shen Z, Jiang C, Cui X, Wang M, Zhou J, Sun Y, Li S, Wang Y (2020) [Effects of curcumin on protein expression of glucose regulated protein 78 and caspase-12 of myocardial endoplasmic reticulum stress related factors in type 2 diabetes rats]. Wei Sheng Yan Jiu 49(1):98–131. https://doi.org/10.19813/j.cnki.weishengyanjiu.2020.01.017.
Feng J, Chen Y, Lu B, Sun X, Zhu H, Sun X (2019) Autophagy activated via GRP78 to alleviate endoplasmic reticulum stress for cell survival in blue light-mediated damage of A2E-laden RPEs. BMC Ophthalmol 19(1):249. https://doi.org/10.1186/s12886-019-1261-4. (PMID: 10.1186/s12886-019-1261-4318237956905025)
Gao HH, Li JT, Liu JJ, Yang QA, Zhang JM (2017) Autophagy inhibition of immature oocytes during vitrification-warming and in vitro mature activates apoptosis via caspase-9 and -12 pathway. Eur J Obstet Gynecol Reprod Biol 217:89–93. https://doi.org/10.1016/j.ejogrb.2017.08.029.
Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491. https://doi.org/10.1038/nrneurol.2017.99. (PMID: 10.1038/nrneurol.2017.9928731040)
Hines LA, Sundin J, Rona RJ, Wessely S, Fear NT (2014) Posttraumatic stress disorder post Iraq and Afghanistan: prevalence among military subgroups. Can J Psychiatry 59(9):468–479. https://doi.org/10.1177/070674371405900903. (PMID: 10.1177/070674371405900903255690794168809)
Ibrahim IM, Abdelmalek DH, Elfiky AA (2019) GRP78: A cell's response to stress. Life Sci 226:156–163. https://doi.org/10.1016/j.lfs.2019.04.022.
Joshi SA, Duval ER, Kubat B, Liberzon I (2020) A review of hippocampal activation in post-traumatic stress disorder. Psychophysiology 57(1):e13357. https://doi.org/10.1111/psyp.13357. (PMID: 10.1111/psyp.1335730829407)
Kim HS, Kim Y, Lim MJ, Park YG, Park SI, Sohn J (2019) The p38-activated ER stress-ATF6α axis mediates cellular senescence. FASEB J 33(2):2422–2434. https://doi.org/10.1096/fj.201800836R. (PMID: 10.1096/fj.201800836R30260700)
La X, Zhang L, Li Z, Yang P, Wang Y (2017) Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget 8(13):20909–20924. https://doi.org/10.18632/oncotarget.14959.
Lee YS, Lee DH, Choudry HA, Bartlett DL, Lee YJ (2018) Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol Cancer Res 16(7):1073–1076. https://doi.org/10.1158/1541-7786.Mcr-18-0055. (PMID: 10.1158/1541-7786.Mcr-18-0055295928976030493)
Lei Y, Wang S, Ren B, Wang J, Chen J, Lu J, Zhan S, Fu Y, Huang L, Tan J (2017) CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One 12(8):e0183680. https://doi.org/10.1371/journal.pone.0183680. (PMID: 10.1371/journal.pone.0183680288416735571976)
Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA (2018) Single-prolonged stress: a review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psych 9:196. https://doi.org/10.3389/fpsyt.2018.00196.
Lu HY, Chen XQ, Tang W, Wang QX, Zhang J (2017) GRP78 silencing enhances hyperoxia-induced alveolar epithelial cell apoptosis via CHOP pathway. Mol Med Rep 16(2):1493–1501. https://doi.org/10.3892/mmr.2017.6681. (PMID: 10.3892/mmr.2017.668128586043)
Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA (2020) The unfolded protein response: a novel therapeutic target in acute leukemias. Cancers (Basel) 12(2). https://doi.org/10.3390/cancers12020333.
Milani AC, Hoffmann EV, Fossaluza V, Jackowski AP, Mello MF (2017) Does pediatric post-traumatic stress disorder alter the brain? Systematic review and meta-analysis of structural and functional magnetic resonance imaging studies. Psychiatry Clin Neurosci 71(3):154–169. https://doi.org/10.1111/pcn.12473. (PMID: 10.1111/pcn.1247327778421)
Moriguchi M, Watanabe T, Fujimuro M (2019) Capsaicin induces ATF4 translation with upregulation of CHOP, GADD34 and PUMA. Biol Pharm Bull 42(8):1428–1432. https://doi.org/10.1248/bpb.b19-00303. (PMID: 10.1248/bpb.b19-0030331366879)
Moyer A (2016) Post-traumatic stress disorder and magnetic resonance imaging. Radiol Technol 87(6):649–667. (PMID: 27390232)
Nisar S, Bhat AA, Hashem S, Syed N, Yadav SK, Uddin S, Fakhro K, Bagga P, Thompson P, Reddy R, Frenneaux MP, Haris M (2020) Genetic and neuroimaging approaches to understanding post-traumatic stress disorder. Int J Mol Sci 21(12). https://doi.org/10.3390/ijms21124503.
Oka OB, van Lith M, Rudolf J, Tungkum W, Pringle M A, Bulleid NJ (2019) ERp18 regulates activation of ATF6α during unfolded protein response. Embo j 38(15):e100990. https://doi.org/10.15252/embj.2018100990.
Okada T, Haze K, Nadanaka S, Yoshida H, Seidah NG, Hirano Y, Sato R, Negishi M, Mori K (2003) A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem 278(33):31024–31032. https://doi.org/10.1074/jbc.M300923200. (PMID: 10.1074/jbc.M30092320012782636)
Poone GK, Hasseldam H, Munkholm N, Rasmussen RS, Grønberg NV, Johansen FF (2015) The hypothermic influence on CHOP and Ero1-α in an endoplasmic reticulum stress model of cerebral ischemia. Brain Sci 5(2):178–187. https://doi.org/10.3390/brainsci5020178. (PMID: 10.3390/brainsci5020178259896204493463)
Qi W, Gevonden M, Shalev A (2016) Prevention of post-traumatic stress disorder after trauma: current evidence and future directions. Curr Psychiatry Rep 18(2):20. https://doi.org/10.1007/s11920-015-0655-0. (PMID: 10.1007/s11920-015-0655-0268009954723637)
Shan W, Han F, Xu Y, Shi Y (2020) Stathmin regulates spatiotemporal variation in the memory loop in single-prolonged stress rats. J Mol Neurosci 70(4):576–589. https://doi.org/10.1007/s12031-019-01459-w. (PMID: 10.1007/s12031-019-01459-w31933182)
Sharma RB, Snyder JT, Alonso LC (2019) Atf6α impacts cell number by influencing survival, death and proliferation. Mol Metab 27s(Suppl):S69-s80. https://doi.org/10.1016/j.molmet.2019.06.005.
Sin J, Spain D, Furuta M, Murrells T, Norman I (2017) Psychological interventions for post-traumatic stress disorder (PTSD) in people with severe mental illness. Cochrane Database Syst Rev 1(1):Cd011464. https://doi.org/10.1002/14651858.CD011464.pub2.
Sisinni L, Pietrafesa M, Lepore S, Maddalena F, Condelli V, Esposito F, Landriscina M (2019) Endoplasmic reticulum stress and unfolded protein response in breast cancer: the balance between apoptosis and autophagy and its role in drug resistance. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040857.
Song J, Zhang Q, Wang S, Yang F, Chen Z, Dong Q, Ji Q, Yuan X, Ren D (2018) Cleavage of caspase-12 at Asp94, mediated by endoplasmic reticulum stress (ERS), contributes to stretch-induced apoptosis of myoblasts. J Cell Physiol 233(12):9473–9487. https://doi.org/10.1002/jcp.26840. (PMID: 10.1002/jcp.2684029943814)
Stauffer WT, Arrieta A, Blackwood EA, Glembotski CC (2020) Sledgehammer to scalpel: broad challenges to the heart and other tissues yield specific cellular responses via transcriptional regulation of the ER-stress master regulator ATF6α. Int J Mol Sci 21(3). https://doi.org/10.3390/ijms21031134.
Wan S, Jiang L (2016) Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. Protoplasma 253(3):753–764. https://doi.org/10.1007/s00709-015-0842-1. (PMID: 10.1007/s00709-015-0842-126060134)
Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J (2018a) Apelin-13 alleviates early brain injury after subarachnoid hemorrhage via suppression of endoplasmic reticulum stress-mediated apoptosis and blood-brain barrier disruption: possible involvement of ATF6/CHOP pathway. Neuroscience 388:284–296. https://doi.org/10.1016/j.neuroscience.2018.07.023.
Xu W, Lu X, Zheng J, Li T, Gao L, Lenahan C, Shao A, Zhang J, Yu J (2018b) Melatonin protects against neuronal apoptosis via suppression of the ATF6/CHOP pathway in a rat model of intracerebral hemorrhage. Front Neurosci 12:638. https://doi.org/10.3389/fnins.2018.00638.
Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39(1). https://doi.org/10.1042/bsr20180992.
Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26(12):1110–1117. https://doi.org/10.1002/da.20629. (PMID: 10.1002/da.2062919918929)
Yu B, Wen L, Xiao B, Han F, Shi Y (2014) Single prolonged stress induces ATF6 alpha-dependent endoplasmic reticulum stress and the apoptotic process in medial frontal cortex neurons. BMC Neurosci 15:115. https://doi.org/10.1186/s12868-014-0115-5.
Yu Y, Yu R, Men W, Zhang P, Zhang Y, Song L, Zhou K (2020) Psoralen induces hepatic toxicity through PERK and ATF6 related ER stress pathways in HepG2 cells. Toxicol Mech Methods 30(1):39–47. https://doi.org/10.1080/15376516.2019.1650150. (PMID: 10.1080/15376516.2019.165015031364909)
Contributed Indexing:
Keywords: Activating transcription factor 6α; Hippocampus; Posttraumatic stress disorder; Single prolonged stress
Substance Nomenclature:
0 (Activating Transcription Factor 6)
0 (Atf6 protein, rat)
0 (Ddit3 protein, rat)
0 (GRP78 protein, rat)
0 (Heat-Shock Proteins)
147336-12-7 (Transcription Factor CHOP)
EC 3.4.21.- (Proprotein Convertases)
EC 3.4.21.- (Serine Endopeptidases)
EC 3.4.21.112 (membrane-bound transcription factor peptidase, site 1)
EC 3.4.22.- (Caspase 12)
Entry Date(s):
Date Created: 20210319 Date Completed: 20220302 Latest Revision: 20220302
Update Code:
20240105
DOI:
10.1007/s12031-021-01823-9
PMID:
33738762
Czasopismo naukowe
Apoptosis of hippocampal neurons is one of the mechanisms of hippocampal atrophy in posttraumatic stress disorder (PTSD), and it is also an important cause of memory impairment in PTSD patients. Endoplasmic reticulum stress (ERS) mediated by activated transcription factor 6α (ATF6α)/site 1 protease (S1P)/S2P is involved in cell apoptosis, but it is not clear whether it is involved in hippocampal neuron apoptosis caused by PTSD. A PTSD rat model was constructed by the single prolonged stress (SPS) method. The study was divided into three parts. Experiment 1 included the control group, SPS 1 d group, SPS 7 d group, and SPS 14 d group. Experiment 2 included the control group, SPS 7 d group, SPS 7 d + AEBSF group, and control + AEBSF group. (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) is an ATF6α pathway inhibitor). Experiment 3 included the control group, SPS 4 d group, SPS 4 d + AEBSF group, and control + AEBSF group. The protein and mRNA expression levels of ATF6α, glucose-regulated protein (GRP78), S1P, S2P, C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of PTSD rats were detected by immunohistochemistry, Western blotting and qRT-PCR. Apoptosis of hippocampal neurons was detected by TUNEL staining. In experiment 1, the protein and mRNA expression of ATF6α and GRP78 increased gradually in the SPS 1 d group and the SPS 7 d group but decreased in the SPS 14 d group (P < 0.01). In experiment 2, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly increased in the SPS 7 d group (P < 0.01). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were significantly decreased after AEBSF pretreatment (P < 0.01). In experiment 3, compared with that in the control group, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were increased in the SPS 14 d group (P < 0.05). However, the protein and mRNA expression of ATF6α, GRP78, S1P, S2P, CHOP, and caspase-12 and the apoptosis rate were decreased after AEBSF pretreatment (P < 0.05). SPS induced apoptosis of hippocampal neurons by activating ERS mediated by ATF6α, suggesting that ERS-induced apoptosis is involved in the occurrence of PTSD.
(© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies