Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Characterization of soy protein hydrolysates and influence of its iron content on monoclonal antibody production by a murine hybridoma cell line.

Tytuł :
Characterization of soy protein hydrolysates and influence of its iron content on monoclonal antibody production by a murine hybridoma cell line.
Autorzy :
Djemal L; Manufacturing Science and Technology, Heathcare, Merck KGaA, Corsier-sur-Vevey, Switzerland.; Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.
von Hagen J; Performance Materials, Merck KGaA, Darmstadt, Germany.
Kolmar H; Department of Applied Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.
Deparis V; Manufacturing Science and Technology, Heathcare, Merck KGaA, Corsier-sur-Vevey, Switzerland.
Pokaż więcej
Źródło :
Biotechnology progress [Biotechnol Prog] 2021 Mar 20, pp. e3147. Date of Electronic Publication: 2021 Mar 20.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
References :
Gupta AJ, Gruppen H, Maes D, Boots JW, Wierenga PA. Factors causing compositional changes in soy protein hydrolysates and effects on cell culture functionality. J Agric Food Chem. 2013;61(45):10613-10625. https://doi.org/10.1021/jf403051z.
Michiels JF, Barbau J, De Boel S, Dessy S, Agathos SN, Schneider YJ. Characterisation of beneficial and detrimental effects of a soy peptone, as an additive for CHO cell cultivation. Process Biochem. 2011;46(3):671-681. https://doi.org/10.1016/j.procbio.2010.11.012.
Yao T, Asayama Y. Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol. 2017;16(2):99-117. https://doi.org/10.1002/rmb2.12024.
Luo Y, Chen G. Combined approach of NMR and chemometrics for screening peptones used in the cell culture medium for the production of a recombinant therapeutic protein. Biotechnol Bioeng. 2007;97(6):1654-1659. https://doi.org/10.1002/bit.21365.
Hartshorn JN, McNorton S, Hernandez C, van der Ent E, Caple MV. Soy hydrolysate optimization for cell culture applications. Cells and Culture: Proceedings of the 20th ESACT Meeting. 4. Springer, Dordrecht: ESACT Proceedings; 2010;777-783. https://doi.org/10.1007/978-90-481-3419-9_135.
McGillicuddy N, Floris P, Albrecht S, Bones J. Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett. 2018;40(1):5-21. https://doi.org/10.1007/s10529-017-2437-8.
Spearman M, Lodewyks C, Richmond M, Butler M. The bioactivity and fractionation of peptide hydrolysates in cultures of CHO cells. Biotechnol Prog. 2014;30(3):584-593. https://doi.org/10.1002/btpr.1930.
Gupta AJ. Correlating composition and functionality of soy protein hydrolysates used in animal cell cultures. NL: Wageningen University; 2015.
Trunfio N, Lee H, Starkey J, Agarabi C, Liu J, Yoon S. Characterization of mammalian cell culture raw materials by combining spectroscopy and chemometrics. Biotechnol Prog. 2017;33(4):1127-1138. https://doi.org/10.1002/btpr.2480.
Davami F, Baldi L, Rajendra YM, Wurm F. Peptone supplementation of culture medium has variable effects on the productivity of CHO cells. Int J Mol Cell Med. 2014;3(3):146-156. http://www.ncbi.nlm.nih.gov/pubmed/25317401%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4170488.
Lau EC, Harrison K. The influence of process parameters on soy hydrolysate chemical composition; Poster presentation: Friesland Campina; 2017.
Durrani A, Ali A, Durrani S, Shaikh JB, Upadhyay A, Khan ZH. Non-animal peptone for serum free cultivation of recombinant mammalian and animal cells. Int J Biol. 2010;3(1):140-145. https://doi.org/10.5539/ijb.v3n1p140.
Miao J, Liao W, Pan Z, et al. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019;10(5):2372-2381. https://doi.org/10.1039/c8fo02414f.
Lv Y, Liu Q, Bao X, Tang W, Yang B, Guo S. Identification and characteristics of iron-chelating peptides from soybean protein hydrolysates using IMAC-Fe3+. Agric Food Chem. 2009;57(11):4593-4597. https://doi.org/10.1021/jf9000204.
Bai Y, Wu C, Zhao J, Liu YH, Ding W, Ling WLW. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production. Biotechnol Prog. 2011;27(1):209-219. https://doi.org/10.1002/btpr.513.
Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell Press. 2004;117:285-297. https://doi.org/10.1016/s0968-0004(05)00043-5.
Song H, Xu J, Jin M, et al. Investigation of color in a fusion protein using advanced analytical techniques: delineating contributions from oxidation products and process related impurities. Pharm Res. 2016;33(4):932-941. https://doi.org/10.1007/s11095-015-1839-3.
Chung S, Tian J, Tan Z, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115(7):1646-1665. https://doi.org/10.1002/bit.26587.
Liu H, Nowak C, Shao M, Ponniah G, Neill A. Impact of cell culture on recombinant monoclonal antibody product heterogeneity. Biotechnol Prog. 2016;32(5):1103-1112. https://doi.org/10.1002/btpr.2327.
Vijayasankaran N, Varma S, Yang Y, et al. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance. Biotechnol Prog. 2013;29(5):1270-1277. https://doi.org/10.1002/btpr.1772.
Rouiller Y, Périlleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog. 2014;30(3):571-583. https://doi.org/10.1002/btpr.1921.
Chung S, Tian J, Tan Z, et al. Modulating cell culture oxidative stress reduces protein glycation and acidic charge variant formation. MAbs. 2019;11(1):205-216. https://doi.org/10.1080/19420862.2018.1537533.
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of non-apoptotic cell death. Cell. 2012;149(5):1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195-2209. https://doi.org/10.1007/s00018-016-2194-1.
Li J, Cao F, Yin H, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(88):1-13. https://doi.org/10.1038/s41419-020-2298-2.
Franzen DW. Soybean Soil Fertility; Fargo, United States: NDSU Extension Soil Specialist; 1999.
Caliskan S, Ozkaya I, Caliskan ME, Arslan M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crop Res. 2008;108(2):126-132. https://doi.org/10.1016/j.fcr.2008.04.005.
Thibaut P, Coumoul A. Mémento roches et minéraux industriels La perlite; 2000:88.
Rocher P. Mémento Roches et Minéraux Industriels; Zéolites Naturelles; 1995.
Dr Keitel S. Metals and Alloys Used in Food Contact Materials and Articles; 1. Strasbourg, France: Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM); 2013.
Grant Information :
Merck KGaA; Eurofins; Millipore Sigma
Contributed Indexing :
Keywords: antibody titer; batch variability; characterization; iron; soy hydrolysates
Entry Date(s) :
Date Created: 20210320 Latest Revision: 20210405
Update Code :
20210405
DOI :
10.1002/btpr.3147
PMID :
33742790
Czasopismo naukowe
A challenging aspect with the use of protein hydrolysates in commercial manufacturing processes of recombinant therapeutic proteins is their impacts on the protein production due to a lack of understanding of batch-to-batch variability. Soy hydrolysates variability and its impact on fed-batch production of a recombinant monoclonal antibody (mAb) expressed in Sp2/0 cells were studied using 37 batches from the same vendor. The batch-to-batch variability of soy hydrolysates impacted cell growth, titer and product quality. Physicochemical characterization of batches confirmed that soy hydrolysates are mainly a source of amino acids and peptides containing lower amounts of other components such as carbohydrates and chemical elements in cell culture media. Soy hydrolysates composition of different batches was consistent except for trace elements. Statistical analyses identified iron as a potential marker of a poor process performance. To verify this correlation, two forms of iron, ferric ammonium citrate and ferrous sulfate, were added to a batch of soy hydrolysates associated to a low level of iron during cell culture. Both forms of iron reduced significantly cell growth, mAb titer and increased level of the acidic charge variants of the mAb. Consequently, trace element composition of soy hydrolysates or of all incoming raw materials might lead to significant impacts on process performance and product quality and therefore need to be tightly controlled.
(© 2021 American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies