Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen.

Tytuł:
A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen.
Autorzy:
Clemmensen KE; Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden.
Durling MB; Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden.
Michelsen A; Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.
Hallin S; Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden.
Finlay RD; Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden.
Lindahl BD; Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, 750 07, Sweden.
Źródło:
Ecology letters [Ecol Lett] 2021 Jun; Vol. 24 (6), pp. 1193-1204. Date of Electronic Publication: 2021 Mar 22.
Typ publikacji:
Letter
Język:
English
Imprint Name(s):
Publication: Oxford, UK : Blackwell Publishing
Original Publication: Oxford, UK : [Paris, France] : Blackwell Science ; Centre national de la recherche scientifique, c1998-
MeSH Terms:
Carbon*
Mycorrhizae*
Arctic Regions ; Ecosystem ; Forests ; Nitrogen ; Soil ; Tundra
References:
Abarenkov, K., Nilsson, R.H., Larsson, K.H., Alexander, I.J., Eberhardt, U., Erland, S. et al. (2010). The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol., 186, 281-285.
Adamczyk, B., Sietiö, O.M., Biasi, C. & Heinonsalo, J. (2019). Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. New Phytol., 223, 16-21.
Agerer, R. (2006). Fungal relationships and structural identity of their ectomycorrhizae. Mycol. Prog., 5, 67-107.
Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545.
Barbi, F., Kohler, A., Barry, K., Baskaran, P., Daum, C., Fauchery, L. et al. (2020). Fungal ecological strategies reflected in gene transcription - a case study of two litter decomposers. Environ. Microbiol., 22, 1089-1103.
Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. & Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355, 181-184.
Bödeker, I.T.M., Clemmensen, K.E., de Boer, W., Martin, F., Olson, Å. & Lindahl, B.D. (2014). Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol., 203, 245-256.
Brodie, J.F., Roland, C.A., Stehn, S.E. & Smirnova, E. (2019). Variability in the expansion of trees and shrubs in boreal Alaska. Ecology, 100, 1-10.
Campioli, M., Leblans, N. & Michelsen, A. (2012). Twenty-two years of warming, fertilisation and shading of subarctic heath shrubs promote secondary growth and plasticity but not primary growth. PLoS ONE, 7, 1-11.
Castaño, C., Berlin, A., Brandström Durling, M., Ihrmark, K., Lindahl, B.D., Stenlid, J. et al. (2020). Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. New Phytol., 228, 1149-1158.
Chapin, F.S. III, Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H. et al. (2005). Role of land-surface changes in arctic summer warming. Science, 310, 657-660.
Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H. et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339, 1615-1618.
Clemmensen, K.E., Finlay, R.D., Dahlberg, A., Stenlid, J., Wardle, D.A. & Lindahl, B.D. (2015). Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol., 205, 1525-1536.
Clemmensen, K.E., Michelsen, A., Jonasson, S. & Shaver, G.R. (2006). Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems. New Phytol., 171, 391-404.
Cornelissen, J.H.C., van Bodegom, P.M., Aerts, R., Callaghan, T.V., van Logtestijn, R.S.P., Alatalo, J. et al. (2007). Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett., 10, 619-627.
Dahlberg, U., Berge, T.W., Petersson, H. & Vencatasawmy, C.P. (2004). Modelling biomass and leaf area index in a sub-arctic Scandinavian mountain area. Scand. J. For. Res., 19, 60-71.
Deslippe, J.R., Hartmann, M., Grayston, J., Simard, S.W. & Mohn, W.W. (2016). Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra. New Phytol., 210, 383-390.
Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Boulanger-Lapointe, N., Cooper, E.J. et al. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Chang., 2, 453-457.
Fernandez, C.W., Heckman, K., Kolka, R. & Kennedy, P.G. (2019). Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett., 22, 498-505.
Fernandez, C.W. & Kennedy, P.G. (2018). Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J. Ecol., 106, 468-479.
Giesler, R., Hogberg, M.N., Strobel, B.W., Richter, A., Nordgren, A. & Hogberg, P. (2007). Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry, 84, 1-12.
Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R., Wiesenbauer, J., Martin, V. et al. (2019). Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol., 10, 168.
Hagedorn, F., Dawes, M.A., Bubnov, M.O., Devi, N.M., Grigoriev, A.A., Mazepa, V.S. et al. (2020). Latitudinal decline in stand biomass and productivity at the elevational treeline in the Ural mountains despite a common thermal growth limit. J. Biogeogr., 47, 1827-1842.
Hartley, I.P., Garnett, M.H., Sommerkorn, M., Hopkins, D.W., Fletcher, B.J., Sloan, V.L. et al. (2012). A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Chang., 2, 875-879.
Hartley, I.P., Garnett, M.H., Sommerkorn, M., Hopkins, D.W. & Wookey, P.A. (2013). The age of CO2 released from soils in contrasting ecosystems during the arctic winter. Soil Biol. Biochem., 63, 1-4.
Hobbie, E.A., Ouimette, A.P., Schuur, E.A.G., Kierstead, D., Trappe, J.M., Bendiksen, K. et al. (2013). Radiocarbon evidence for the mining of organic nitrogen from soil by mycorrhizal fungi. Biogeochemistry, 114, 381-389.
Högberg, P., Högbom, L., Schinkel, H., Högberg, M., Johannisson, C. & Wallmark, H. (1996). 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia, 108, 207-214.
IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC, pp. 151.
Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S. et al. (2020). Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci., 13, 560-565.
Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
Kyaschenko, J., Ovaskainen, O., Ekblad, A., Hagenbo, A., Karltun, E., Clemmensen, K.E. et al. (2018). Soil fertility in boreal forest relates to root-driven nitrogen retention and carbon sequestration in the mor layer. New Phytol., 221, 1492-1502.
Lilleskov, E.A., Hobbie, E.A. & Fahey, T.J. (2002). Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol., 154, 219-231.
Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Högberg, P., Stenlid, J. et al. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol., 173, 611-620.
Lindahl, B.D., Kyaschenko, J., Varenius, K., Clemmensen, K.E., Dahlberg, A., Karltun, E. et al. (2021). A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Lett. Ecol., accepted.
Lindahl, B.D. & Tunlid, A. (2015). Tansley insight. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol., 205, 1443-1447.
Martino, E., Morin, E., Grelet, G.A., Kuo, A., Kohler, A., Daghino, S. et al. (2018). Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol., 217, 1213-1229.
Mayor, J.R., Sanders, N.J., Classen, A.T., Bardgett, R.D., Clément, J.C., Fajardo, A. et al. (2017). Elevation alters ecosystem properties across temperate treelines globally. Nature, 542, 91-95.
McGuire, K.L., Allison, S.D., Fierer, N. & Treseder, K.K. (2013). Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS ONE, 8, 1-9.
Myers-Smith, I.H., Elmendorf, S.C., Beck, P.S.A., Wilmking, M., Hallinger, M., Blok, D. et al. (2015). Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang., 5, 887-891.
Myers-Smith, I.H., Grabowski, M.M., Thomas, H.J.D., Angers-Blondin, S., Daskalova, G.N., Bjorkman, A.D. et al. (2019). Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr., 89(2), e01351.
Nicolás, C., Martin-Bertelsen, T., Floudas, D., Bentzer, J., Smits, M., Johansson, T. et al. (2019). The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J., 13, 977-988.
Northup, R.R., Yu, Z., Dahlgren, R.A. & Vogt, K.A. (1995). Polyphenol control of nitrogen release from pine litter. Nature, 377, 227-229.
Parker, T.C., Clemmensen, K.E., Friggens, N.L., Hartley, I.P., Johnson, D., Lindahl, B.D. et al. (2020). Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytol., 227, 1818-1830.
Parker, T.C., Sanderman, J., Holden, R.D., Blume-Werry, G., Sjögersten, S., Large, D. et al. (2018). Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline. Ecology, 99, 2284-2294.
Parker, T.C., Subke, J.A. & Wookey, P.A. (2015). Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Chang. Biol., 21, 2070-2081.
Phillips, R.P., Brzostek, E. & Midgley, M.G. (2013). The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol., 199, 41-51.
Post, W.M., Emanuel, W.R., Zinke, P.J. & Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature, 298, 156-159.
Ravn, N.R., Ambus, P. & Michelsen, A. (2017). Impact of decade-long warming, nutrient addition and shading on emission and carbon isotopic composition of CO2 from two subarctic dwarf shrub heaths. Soil Biol. Biochem., 111, 15-24.
Read, D.J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391.
Read, D.J. & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? New Phytol., 157, 475-492.
Rineau, F., Roth, D., Shah, F., Smits, M., Johansson, T., Canbäck, B. et al. (2012). The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Microbiology, 14, 1477-1487.
Sandén, H., Mayer, M., Stark, S., Sandén, T., Nilsson, L.O., Jepsen, J.U. & et al. (2020). Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems, 23, 151-163.
Scharnagl, K., Johnson, D. & Ebert-May, D. (2019). Shrub expansion and alpine plant community change: 40-year record from Niwot Ridge. Colorado. Plant Ecol. Divers., 12, 407-416.
Shah, F., Nicolas, C., Bentzer, J., Ellstrom, M., Smits, M., Rineau, F. et al. (2016). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol., 209, 1705-1719.
Sjögersten, S., Turner, B.L., Mahieu, N., Condron, L.M. & Wookey, P.A. (2003). Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Chang. Biol., 9, 759-772.
Smith, T.M. & Shugart, H.H. (1993). The transient response of terrestrial carbon storage to a perturbed climate. Nature, 361, 523-526.
Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D.A., Reich, P.B. et al. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404-408.
Sterkenburg, E., Bahr, A., Durling, M.B., Clemmensen, K.E. & Lindahl, B.D. (2015). Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol., 207, 1145-1158.
Sterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. & Lindahl, B.D. (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J., 12, 2187-2197.
Tamm, C.O. (1991). Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Ecological Studies 81. Berlin: Springer Verlag. pp. 116.
Wookey, P.A., Aerts, R., Bardgett, R.D., Baptist, F., Bråthen, K., Cornelissen, J.H.C. et al. (2009). Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol., 15, 1153-1172.
Grant Information:
2011-1747 Swedish Research Council Formas; 2013-655 Swedish Research Council Formas; 221056 Marie Curie Intra European Fellowship within the 7th European Community Framework Programme
Contributed Indexing:
Keywords: Arctic warming; carbon sequestration; decomposition; functional genes; meta-barcoding; mycorrhizal type; nitrogen cycling; soil fungal communities; stable isotopes; treeline ecotone
Substance Nomenclature:
0 (Soil)
7440-44-0 (Carbon)
N762921K75 (Nitrogen)
Entry Date(s):
Date Created: 20210323 Date Completed: 20210520 Latest Revision: 20210520
Update Code:
20240105
DOI:
10.1111/ele.13735
PMID:
33754469
Opinia redakcyjna
Tundra ecosystems are global belowground sinks for atmospheric CO 2 . Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO 2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C-N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra.
(© 2021 The Authors. Ecology Letters published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies