Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Seismic behaviour analysis of a wind turbine tower affected by sea ice based on a simplified model.

Tytuł :
Seismic behaviour analysis of a wind turbine tower affected by sea ice based on a simplified model.
Autorzy :
Huang S; National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, 100085, China. .
Qi Q; China Coal Research Institute, Beijing, 100013, China.
Zhai S; Institute of Disaster Prevention, Sanhe, 065201, Hebei, China.
Liu W; China Coal Research Institute, Beijing, 100013, China.
Liu J; China Coal Research Institute, Beijing, 100013, China.
Pokaż więcej
Źródło :
Scientific reports [Sci Rep] 2021 Mar 24; Vol. 11 (1), pp. 6714. Date of Electronic Publication: 2021 Mar 24.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: London : Nature Publishing Group, copyright 2011-
References :
Canadian Standards Association. General Requirements, Design Criteria, the Environment, and Loads (CAN/ CSA S471-04, 2008).
PN EN 1998-2-2005. Eurocode 8—Design of Structures for Earthquake Resistance—Part 2: Bridges (Polish Committee for Standardisation, 2005).
American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms, Load and Resistance Factor Design, RP2A-LFRD (American Petroleum Institute, 2007).
Staroszczyk, R. On maximum forces exerted by floating ice on a structure due to constrained thermal expansion of ice. Mar. Struct. 75, 102884 (2021). (PMID: 10.1016/j.marstruc.2020.102884)
Yu, Z., Lu, W., den Berg, M., Amdahl, J. & Løset, S. Glacial ice impacts: part II: damage assessment and ice-structure interactions in accidental limit states (ALS). Mar. Struct. 75, 102889 (2021). (PMID: 10.1016/j.marstruc.2020.102889)
Sun, J. & Huang, Y. Investigations on the ship-ice impact: part 1. Experimental methodologies. Mar. Struct. 72, 102772 (2020). (PMID: 10.1016/j.marstruc.2020.102772)
Paavilainen, J. & Tuhkuri, J. Parameter effects on simulated ice rubbling forces on a wide sloping structure. Cold Reg. Sci. Technol. 81, 1–10 (2012). (PMID: 10.1016/j.coldregions.2012.04.005)
Brown, T. G., Tibbo, S. J., Tripathi, D., Obert, K. & Shrestha, N. Extreme ice load events on the confederation bridge. Cold Reg. Sci. Technol. 2010(60), 1–14 (2010). (PMID: 10.1016/j.coldregions.2009.08.004)
Kujala, P. et al. Review of risk-based design for ice-class ships. Mar. Struct. 63, 181–195 (2019). (PMID: 10.1016/j.marstruc.2018.09.008)
Lingling, J. & Yang, H. Response analysis of bridge pier in deep water under different loads action. Earthq. Resist. Eng. Retrofit. 33(2), 33–36 (2011).
Kobayashi, H. Evaluation of seismic load on the marine structure in ice-covered waters. In Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan (2002).
ISO-19906. Arctic Offshore Structures Standard (2010).
Xiong, F. & Xu, G. Numerical investigation of river ice-bridge pier interaction. In Structures 2009: Don't Mess with Structural Engineers, 48–57 (ASCE, 2009).
Risk, K. & Bridges, R. Limit state design and methodologies in ice class rules for ships and standards for Arctic offshore structures. Mar. Struct. 63, 462–479 (2019). (PMID: 10.1016/j.marstruc.2017.09.005)
Hendrikse, H. & Nord, T. S. Dynamic response of an offshore structure interacting with an ice floe failing in crushing. Mar. Struct. 65, 271–290 (2019). (PMID: 10.1016/j.marstruc.2019.01.012)
Paquette, E. & Brown, T. G. Ice crushing forces on offshore structures: global effective pressures and the ISO 19906 design equation. Cold Reg. Sci. Technol. 142, 55–68 (2017). (PMID: 10.1016/j.coldregions.2017.07.010)
Kato, K. et al. Ice and earthquake loads on a structure in the Okhotsk sea. Int. J. Offshore Polar Eng. 11(4), 04–218 (2001).
Sato, K., Nakanishi, M. et al. Earthquake response characteristics of offshore structures surrounded by ice floes: part 21 earthquake response analysis on modify hysteretic curve of the conical offshore structure. In Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, 265–266 (2001).
Jia, L. L. Seismic and ice response analysis of bridge pier in deep water with the water effect. Technol. Earthq. Disaster Prev. 5(2), 264–269 (2010).
Ji, X. & Oterkus, E. A dynamic ice-structure interaction model for ice-induced vibrations by using van der pol equation. Ocean Eng. 128, 147–152 (2016). (PMID: 10.1016/j.oceaneng.2016.10.028)
GB18306-2015. Seismic Ground Motion Parameters Zonation Map of China (China Planning Press, 2019).
Huang, S., Huang, M., Lyu, Y. & Xiu, L. Effect of sea ice on seismic collapse-resistance performance of wind turbine tower based on a simplified calculation model. Eng. Struct. 221, 1–20 (2021).
Japan Road Association. Specifications for Highway Bridges Part V: Seismic Design 1st edn. (Japan Road Association, 2002).
GB50135-2019. Code for Design of High-Rising Structures (China Planning Press, 2019).
Meng, J., Dai, K., Mao, Z., Wang, Y. & Zhao, Z. Shaking table test model design of a 1.5 MW wind turbine tower. World Earthq. Eng. 34(4), 191–198 (2018).
Zhao, B., Wang, Z., Gao, H. & Lu, Z. Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper. Wind Energy 21(12), 1309–1328 (2018). (PMID: 10.1002/we.2256)
Song, W. et al. Conceptual study of a real-time hybrid simulation framework for monopile offshore wind turbines under wind and wave loads. Front. Built Environ. 6, 129 (2020). (PMID: 10.3389/fbuil.2020.00129)
Louis, B. The Pi theorem of dimensional analysis. Arch. Ration. Mech. Anal. 1(1), 35–45 (1957). (PMID: 10.1007/BF00297994)
Grant Information :
51708516 National Natural Science Foundation of China; 2018QNRC001 CAST's Young Elite Scientists Sponsorship Programm; 2017YFC1500404 National Key R & D Programme of China; ZDJ2019-10 The Institute of Crustal Dynamics, China Earthquake Administration
Entry Date(s) :
Date Created: 20210325 Latest Revision: 20210327
Update Code :
20211220
PubMed Central ID :
PMC7991629
DOI :
10.1038/s41598-021-86142-0
PMID :
33762625
Czasopismo naukowe
Ice-structure interaction threatens the safety of the offshore structure; however, dynamic seismic action even renders this process more sophisticated. This research constructed a simplified calculation model for the wind turbine tower, ice, and water under seismic loading, which could avoid solving the complex non-linear equations. Then, the seismic behaviour of the structure, i.e. wind turbine tower, in the presence and absence of influences of the sea ice was investigated, and we found the remarkable effect of sea ice upon the wind turbine tower when its mass is within a range; the wind turbine tower is found to have reduced capacity in energy dissipation, and thickness of tower walls or stiffening ribs is supposed to be enlarged for making the structure more ductile. Affected by the sea ice, the shear force and bending moment of the tower showed significant increases, and more attention needs to be paid to the tower bottom and action position of the sea ice. According to the dynamic similarity principle, finally paraffin was used to simulate sea ice, and shaking-table tests were performed for simulating dynamic ice-structure-water interactions. Results of shaking-table tests verified the rationality of our proposed simplified model.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies