Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The semiparametric accelerated trend-renewal process for recurrent event data.

Tytuł:
The semiparametric accelerated trend-renewal process for recurrent event data.
Autorzy:
Su CL; Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada. .; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada. .
Steele RJ; Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada.
Shrier I; Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
Źródło:
Lifetime data analysis [Lifetime Data Anal] 2021 Jul; Vol. 27 (3), pp. 357-387. Date of Electronic Publication: 2021 Mar 25.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: <2007->: Boston : Springer
Original Publication: Boston : Kluwer Academic Publishers, 1995-
MeSH Terms:
Longitudinal Studies*
Computer Simulation ; Humans
References:
Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4):1100–1120.
Bain L (2017) Statistical analysis of reliability and life-testing models: theory and methods, 2nd edn. Routledge, New York.
Baltazar-Aban I, Peña EA (1995) Properties of hazard-based residuals and implications in model diagnostics. J Am Stat Assoc 90(429):185–197.
Buckley J, James I (1979) Linear regression with censored data. Biometrika 66(3):429–436.
Cai T, Wei LJ, Wilcox M (2000) Semiparametric regression analysis for clustered failure time data. Biometrika 87(4):867–878.
Chang SH (2004) Estimating marginal effects in accelerated failure time models for serial sojourn times among repeated events. Lifetime Data Anal 10(2):175–190.
Chiou SH, Kang S, Kim J, Yan J (2014) Marginal semiparametric multivariate accelerated failure time model with generalized estimating equations. Lifetime Data Anal 20(4):599–618.
Clement DY, Strawderman RL (2009) Conditional GEE for recurrent event gap times. Biostatistics 10(3):451–467.
Cook RJ, Lawless J (2007) The statistical analysis of recurrent events. Springer, New York.
Cook RJ, Lawless JF, Lakhal-Chaieb L, Lee KA (2009) Robust estimation of mean functions and treatment effects for recurrent events under event-dependent censoring and termination: application to skeletal complications in cancer metastatic to bone. J Am Stat Assoc 104(485):60–75.
Darlington G, Dixon S (2013) Event-weighted proportional hazards modelling for recurrent gap time data. Stat Med 32(1):124–130.
Du P (2009) Nonparametric modeling of the gap time in recurrent event data. Lifetime Data Anal 15(2):256–277.
Gail M, Santner T, Brown C (1980) An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics 36(2):255–266.
Gámiz ML, Lindqvist BH (2016) Nonparametric estimation in trend-renewal processes. Reliab Eng Syst Saf 145:38–46.
Gaudoin O, Yang B, Xie M (2003) A simple goodness-of-fit test for the power-law process, based on the Duane plot. IEEE Trans Reliab 52(1):69–74.
González JR, Fernandez E, Moreno V, Ribes J, Peris M, Navarro M, Cambray M, Borràs JM (2005) Sex differences in hospital readmission among colorectal cancer patients. J Epidemiol Commun Health 59(6):506–511.
Hamilton GM, Meeuwisse WH, Emery CA, Shrier I (2011) Subsequent injury definition, classification, and consequence. Clin J Sport Med 21(6):508–514.
Heggland K, Lindqvist BH (2007) A non-parametric monotone maximum likelihood estimator of time trend for repairable system data. Reliab Eng Syst Saf 92(5):575–584.
Huang Y, Chen YQ (2003) Marginal regression of gaps between recurrent events. Lifetime Data Anal 9(3):293–303.
Jokiel-Rokita A, Magiera R (2012) Estimation of parameters for trend-renewal processes. Stat Comput 22(2):625–637.
Kang F, Sun L, Zhao X (2015) A class of transformed hazards models for recurrent gap times. Comput Stat Data Anal 83:151–167.
Kvaløy JT, Lindqvist BH (1998) TTT-based tests for trend in repairable systems data. Reliab Eng Syst Saf 60(1):13–28.
Lawless JF, Nadeau C (1995) Some simple robust methods for the analysis of recurrent events. Technometrics 37(2):158–168.
Lawless JF, Çiğşar C, Cook RJ (2012) Testing for monotone trend in recurrent event processes. Technometrics 54(2):147–158.
Lawless JF (1987) Regression methods for Poisson process data. J Am Stat Assoc 82(399):808–815.
Lin D, Wei L, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc Ser B (Stat Methodol) 62(4):711–730.
Lindqvist B, Elvebakk G, Heggland K (2003) The trend-renewal process for statistical analysis of repairable systems. Technometrics 45(1):31–44.
Lindqvist BH (2006) On the statistical modeling and analysis of repairable systems. Stat Sci 21:532–551.
Louzada F, Macera MA, Cancho VG (2017) A gap time model based on a multiplicative marginal rate function that accounts for zero-recurrence units. Stat Methods Med Res 26(5):2000–2010.
Luo X, Huang CY (2011) Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method. Stat Med 30(4):301–311.
Miller RG (1976) Least squares regression with censored data. Biometrika 63(3):449–464.
Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313.
Nelson W (1988) Graphical analysis of system repair data. J Qual Technol 20(1):24–35.
Pan W, Connett JE (2001) A multiple imputation approach to linear regression with clustered censored data. Lifetime Data Anal 7(2):111–123.
Peña EA, Strawderman RL, Hollander M (2001) Nonparametric estimation with recurrent event data. J Am Stat Assoc 96(456):1299–1315.
Pietzner D, Wienke A (2013) The trend-renewal process: a useful model for medical recurrence data. Stat Med 32(1):142–152.
Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68(2):373–379.
Rondeau V, Mazroui Y, Gonzalez JR (2012) frailtypack: an r package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J Stat Softw 47(4):1–28.
Schaubel DE, Cai J (2004a) Non-parametric estimation of gap time survival functions for ordered multivariate failure time data. Stat Med 23(12):1885–1900.
Schaubel DE, Cai J (2004b) Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data. Biometrika 91(2):291–303.
Strawderman RL (2005) The accelerated gap times model. Biometrika 92(3):647–666.
Strawderman RL (2006) A regression model for dependent gap times. Int J Biostat 2(1):1–32.
Su CL, Lin FC (2020) Analysis of cyclic recurrent event data with multiple event types. Jpn J Stat Data Sci 1–21.
Su CL, Steele R, Shrier I (2020a) Doubly robust estimation and causal inference for recurrent event data. Stat Med 39(17):2324–2338.
Su CL, Platt RW, Plante JF (2020b) Causal inference for recurrent event data using pseudo-observations. Biostatistics.
Sun L, Park DH, Sun J (2006) The additive hazards model for recurrent gap times. Statistica Sinica 16(3):919–932.
Team RC, Worldwide C (2002) The r stats package. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
Varadhan R, Gilbert P (2009) BB: an R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. J Stat Softw 32(4):1–26.
Wang MC, Chang SH (1999) Nonparametric estimation of a recurrent survival function. J Am Stat Assoc 94(445):146–153.
Ye Y, Kalbfleisch JD, Schaubel DE (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63(1):78–87.
Yin G, Cai J (2005) Quantile regression models with multivariate failure time data. Biometrics 61(1):151–161.
Ying Z, Wei LJ (1994) The Kaplan–Meier estimate for dependent failure time observations. J Multivar Anal 50(1):17–29.
Zeng D, Lin D (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93(3):627–640.
Zeng D, Lin D (2008) Efficient resampling methods for nonsmooth estimating functions. Biostatistics 9(2):355–363.
Zhao X, Zhou X (2012) Modeling gap times between recurrent events by marginal rate function. Comput Stat Data Anal 56(2):370–383.
Grant Information:
CHRPJ/478521-2015 Canada CIHR
Contributed Indexing:
Keywords: Accelerated transformed gap time model; Buckley–James imputation; Model diagnostic plots; Prediction; Recurrent events; Trend-renewal process
Entry Date(s):
Date Created: 20210326 Date Completed: 20211028 Latest Revision: 20211028
Update Code:
20240105
DOI:
10.1007/s10985-021-09519-3
PMID:
33768490
Czasopismo naukowe
Recurrent event data arise in many biomedical longitudinal studies when health-related events can occur repeatedly for each subject during the follow-up time. In this article, we examine the gap times between recurrent events. We propose a new semiparametric accelerated gap time model based on the trend-renewal process which contains trend and renewal components that allow for the intensity function to vary between successive events. We use the Buckley-James imputation approach to deal with censored transformed gap times. The proposed estimators are shown to be consistent and asymptotically normal. Model diagnostic plots of residuals and a method for predicting number of recurrent events given specified covariates and follow-up time are also presented. Simulation studies are conducted to assess finite sample performance of the proposed method. The proposed technique is demonstrated through an application to two real data sets.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies