Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Insulin as a neuroendocrine hormone.

Tytuł :
Insulin as a neuroendocrine hormone.
Autorzy :
Grattan DR; Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
Andrews ZB; Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
Pokaż więcej
Źródło :
Journal of neuroendocrinology [J Neuroendocrinol] 2021 Apr; Vol. 33 (4), pp. e12966. Date of Electronic Publication: 2021 Mar 30.
Typ publikacji :
Editorial
Język :
English
Imprint Name(s) :
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
References :
Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251-266.
Bliss M. Resurrections in Toronto: the emergence of insulin. Horm Res. 2005;64(Suppl 2):98-102.
Hegele RA, Maltman GM. Insulin's centenary: the birth of an idea. Lancet Diabetes Endocrinol. 2020;8:971-977.
Ahmed A. History of diabetes mellitus. Saudi Med J. 2002;23:373-378.
von Mering J, Minkowski O. Diabetes mellitus nach Pankreasexstirpation. Archiv für Exp Pathol Pharmakol. 1890;12:371-387.
MacLeod JRR. The source of insulin: a study of the effect produced on blood sugar by extracts of the pancreas and principal islets of fishes. J Metab Res. 1922;2;149-172.
Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12:141-146.
Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr. Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev. 1992;13:387-414.
Kasahara M, Uetani E. The effect of insulin upon the reducing substance in the cerebrospinal fluid of normal rabbits. J Biol Chem. 1924;59:433-436.
Supniewski JV, Ishikawa Y, Geiling EMK. The effect of insulin injected into the cerebrospinal fluid. J Biol Chem. 1927;74:241-246.
Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215:1375-1376.
Rhea EM, Banks WA. A historical perspective on the interactions of insulin at the blood-brain barrier. J Neuroendocrinol. 2021;e12929.
Szabo O, Szabo AJ. Evidence for an insulin-sensitive receptor in the central nervous system. Am J Physiol. 1972;223:1349-1353.
Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827-829.
Hill JM, Lesniak MA, Pert CB, Roth J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 1986;17:1127-1138.
Marks JL, Porte D Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol. 1991;5:1158-1168.
Marks JL, Porte D Jr, Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology. 1990;127:3234-3236.
Belsham DD, Dalvi PS. Insulin signalling in hypothalamic neurones. J Neuroendocrinol. 2020;e12919.
Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503-505.
Benoit SC, Air EL, Coolen LM, et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci. 2002;22:9048-9052.
Niswender KD, Morrison CD, Clegg DJ, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003;52:227-231.
Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci. 2002;5:566-572.
Beddows CA, Dodd GT. Insulin on the brain: the role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol. 2021;e12947.
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol. 2021;e12952.
Dodd GT, Kim SJ, Mequinion M, et al. Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance. Sci Adv. 2021;7:eabf4100.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425-432.
Brüning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science (New York, NY). 2000;289:2122-2125.
Evans MC, Hill JW, Anderson GM. Role of insulin in the neuroendocrine control of reproduction. J Neuroendocrinol. 2021;e12930.
Ikeda H, West DB, Pustek JJ, et al. Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite. 1986;7:381-386.
Phillips MS, Liu Q, Hammond HA, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996;13:18-19.
Boucsein A, Kamstra K, Tups A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol. 2021;e12944.
Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376-1382.
Konner AC, Janoschek R, Plum L, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5:438-449.
Lee NJ, Herzog H. Coordinated regulation of energy and glucose homeostasis by insulin and the NPY system. J Neuroendocrinol. 2020;e12925.
Garcia SM, Hirschberg PR, Sarkar P, et al. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol. 2021;e12937.
Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol. 2021;e12941.
Georgescu T, Lyons D, Heisler LK. Role of serotonin in body weight, insulin secretion and glycaemic control. J Neuroendocrinol. 2021.
Smith KJ, Beland M, Clyde M, et al. Association of diabetes with anxiety: a systematic review and meta-analysis. J Psychosom Res. 2013;74:89-99.
van Bastelaar KMP, Pouwer F, Geelhoed-Duijvestijn PHLM, et al. Diabetes-specific emotional distress mediates the association between depressive symptoms and glycaemic control in Type 1 and Type 2 diabetes. Diabetic Med. 2010;27:798-803.
Gonderfrederick LA, Cox DJ, Bobbitt SA, Pennebaker JW. Mood changes associated with blood-glucose fluctuations in insulin-dependent diabetes-mellitus. Health Psychol. 1989;8:45-59.
Martin H, Bullich S, Guiard BP, Fioramonti X. The impact of insulin on the serotonergic system and consequences on diabetes-associated mood disorders. J Neuroendocrinol. 2021;e12928.
Rawlinson S, Andrews ZB. Hypothalamic insulin signalling as a nexus regulating mood and metabolism. J Neuroendocrinol. 2021;e12939.
Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol. 2013;719:170-179.
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol. 2021;e12932.
Ferreira S. Brain insulin, insulin-like growth factor 1, and glucagon-like peptide 1 signaling in Alzheimer’s disease. J Neuroendocrinol. 2021.
Hamer JA, Testani D, Mansur RB, Lee Y, Subramaniapillai M, McIntyre RS. Brain insulin resistance: A treatment target for cognitive impairment and anhedonia in depression. Exp Neurol. 2019;315:1-8.
Hallschmid M. Intranasal insulin. J Neuroendocrinol. 2021;e12934.
Dearden L, Bouret SG, Ozanne SE. Nutritional and developmental programming effects of insulin. J Neuroendocrinol. 2021;e12933.
Ladyman SR, Brooks BL. Central actions of insulin during pregnancy and lactation. J Neuroendocrinol. 2021.
González-Garcia I, Gruber T, Garcia-Caceres C. Insulin action on astrocytes: from energy homeostasis to behavior. J Neuroendocrinol. 2021.
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol. 2021.
Flier JS, Khan CR. Insulin: A pacesetter for the shape of modern biomedical science and the Nobel Prize. Mol Metab. 2021;101194, in press.
Entry Date(s) :
Date Created: 20210331 Latest Revision: 20210416
Update Code :
20210416
DOI :
10.1111/jne.12966
PMID :
33786903
Opinia redakcyjna
The year 2021 marks 100 years since the discovery of insulin and this Special Issue of the Journal of Neuroendocrinology was conceived as a way to mark that historic breakthrough. The discovery of insulin and its subsequent use in the treatment of diabetes is one of the most striking success stories in biomedical research. From a neuroendocrinology perspective, the recognition that insulin also exerts widespread and varied actions in the brain is more recent, but potentially also of equal importance with relevance for conditions ranging from obesity to dementia. The reviews contained in this Special Issue were selected to cover the range of known actions of insulin in neuroendocrine function, and also to highlight areas where further understanding of insulin actions in the brain hold great promise for further improvements in human health.
(© 2021 British Society for Neuroendocrinology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies