Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats.

Tytuł:
Weight-bearing exercise prevents skeletal muscle atrophy in ovariectomized rats.
Autorzy:
Tang L; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
Cao W; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
Zhao T; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
Yu K; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
Sun L; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
Guo J; Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, China.
Fan X; Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China. .
Ta D; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China. .
Źródło:
Journal of physiology and biochemistry [J Physiol Biochem] 2021 May; Vol. 77 (2), pp. 273-281. Date of Electronic Publication: 2021 Mar 31.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Pamplona, Spain : Servicio de Publicaciones de la Universidad De Navarra (departamentos de fisiología y nutrición y de bioquimica), [1998-
MeSH Terms:
Weight-Bearing*
Muscle, Skeletal/*metabolism
Muscular Atrophy/*genetics
Muscular Atrophy/*prevention & control
Physical Conditioning, Animal/*methods
Signal Transduction/*genetics
Activin Receptors, Type II/genetics ; Activin Receptors, Type II/metabolism ; Animals ; Estrogens/deficiency ; Female ; Gene Expression Regulation ; Muscle, Skeletal/physiopathology ; Muscular Atrophy/etiology ; Muscular Atrophy/physiopathology ; Myostatin/genetics ; Myostatin/metabolism ; Nerve Tissue Proteins/genetics ; Nerve Tissue Proteins/metabolism ; Ovariectomy/adverse effects ; Ovary/metabolism ; Ovary/surgery ; Proto-Oncogene Proteins c-akt/genetics ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Rats, Sprague-Dawley ; TOR Serine-Threonine Kinases/genetics ; TOR Serine-Threonine Kinases/metabolism
References:
Bekkelund SI, Jorde R (2017) Creatine kinase in relation to body fat in a Caucasian overweight and obese population. Scand J Clin Lab Invest 78:43–48. https://doi.org/10.1080/00365513.2017.1408140. (PMID: 10.1080/00365513.2017.140814029258351)
Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708. https://doi.org/10.1126/science.1065874. (PMID: 10.1126/science.106587411679633)
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019. https://doi.org/10.1038/ncb1101-1014. (PMID: 10.1038/ncb1101-1014)
Brady AO, Straight CR (2014) Muscle capacity and physical function in older women: what are the impacts of resistance training? J Sport Health Sci 3:179–188. https://doi.org/10.1016/j.jshs.2014.04.002. (PMID: 10.1016/j.jshs.2014.04.002)
Camporez JG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, Haqq CM, Petersen KF, Shulman GI (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci 113:2212–2217. https://doi.org/10.1073/pnas.1525795113. (PMID: 10.1073/pnas.152579511326858428)
Chopard A, Hillock S, Jasmin BJ (2009) Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures. J Cell Mol Med 13:3032–3050. https://doi.org/10.1111/j.1582-4934.2009.00864.x. (PMID: 10.1111/j.1582-4934.2009.00864.x196562434516463)
Coleman SK, Rebalka IA, D’Souza DM, Hawke TJ (2015) Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 6:1323–1336. https://doi.org/10.4239/wjd.v6.i17.1323. (PMID: 10.4239/wjd.v6.i17.1323266748484673386)
Collins BC, Arpke RW, Larson AA, Spangenburg EE, Kyba M, Lowe DA (2019) Estrogen regulates the satellite cell compartment in females. Cell Rep 28:368–381. https://doi.org/10.1016/j.celrep.2019.06.025. (PMID: 10.1016/j.celrep.2019.06.025312915746655560)
Fernandez-Gonzalo R, Fernandez-Gonzalo S, Turon M, Prieto C, Tesch PA, Mdel CG (2016) Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilotrandomized controlled trial. J Neuroeng Rehabil 13:37–47. https://doi.org/10.1186/s12984-016-0144-7. (PMID: 10.1186/s12984-016-0144-7270523034823904)
Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, Boue D, Martin PT, Sahenk Z, Mendell JR, Kaspar BK (2008) Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci 105:4318–4322. https://doi.org/10.1073/pnas.0709144105. (PMID: 10.1073/pnas.070914410518334646)
Ide M, Ogata H, Kobayashi M, Wada F (1997) Muscle damage occurring in wheelchair sports people. Spinal Cord 35:234–237. https://doi.org/10.1038/sj.sc.3100405. (PMID: 10.1038/sj.sc.31004059143086)
Junior RM, Berton R, De Souza TM, Chacon-Mikahil MP, Cavaglieri CR (2017) Effect of the flexibility training performed immediately before resistance training on muscle hypertrophy, maximum strength and flexibility. Eur J Appl Physiol 117:767–774. https://doi.org/10.1021/acs.analchem.6b04710. (PMID: 10.1021/acs.analchem.6b0471028251401)
Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279:41114–41123. https://doi.org/10.1074/jbc.M400674200. (PMID: 10.1074/jbc.M40067420015272020)
Konopka AR, Douglass MD, Kaminsky LA, Jemiolo B, Trappe TA, Trappe S, Harber MP (2010) Molecular adaptations to aerobic exercise training in skeletal muscle of older women. J Gerontol A Biol Sci Med Sci 65:1201–1207. https://doi.org/10.1093/gerona/glq109. (PMID: 10.1093/gerona/glq10920566734)
Krainski F, Hastings JL, Heinicke K, Romain N, Pacini EL, Snell PG, Wyrick P, Palmer MD, Haller RG, Levine BD (2014) The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest. J Appl Physiol 116:1569–1581. https://doi.org/10.1152/japplphysiol.00803.2013. (PMID: 10.1152/japplphysiol.00803.201324790012)
Kristjansson RP, Asmundur O, Hannes H et al (2016) Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase. Nat Commun 7:10572. https://doi.org/10.1038/ncomms10572. (PMID: 10.1038/ncomms10572268380404742860)
Lee YS, Huynh TV, Lee SJ (2016) Paracrine and endocrine modes of myostatin action. J Appl Physiol 120:592–598. https://doi.org/10.1152/japplphysiol.00874.2015. (PMID: 10.1152/japplphysiol.00874.201526769954)
Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3 β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576:923–933. https://doi.org/10.1113/jphysiol.2006.116175. (PMID: 10.1113/jphysiol.2006.116175169169071890416)
Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U (2013) Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res 27:2879–2886. https://doi.org/10.1519/JSC.0b013e318280d4e2. (PMID: 10.1519/JSC.0b013e318280d4e223287836)
Newman AB, Brach JS (2001) Gender gap in longevity and disability in older persons. Epidemiol Rev 23:343–350. https://doi.org/10.1093/oxfordjournals.epirev.a000810. (PMID: 10.1093/oxfordjournals.epirev.a00081012192741)
Norrby M, Evertsson K, Fjallstrom AK, Svensson A, Tagerud S (2012) Akt (protein kinase B) isoform phosphorylation and signaling downstream of mTOR (mammalian target of rapamycin) in denervated atrophic and hypertrophic mouse skeletal muscle. J Mol Signal 7:7–19. https://doi.org/10.1186/1750-2187-7-7. (PMID: 10.1186/1750-2187-7-7226572513406959)
Oliva P, Costa S, Larcan R (2013) Physical self-concept and its relationship to exercise dependence symptoms in young regular physical exercisers. Am J Sports Sci Med 1:1–6. https://doi.org/10.12691/ajssm-1-1-1. (PMID: 10.12691/ajssm-1-1-1)
Patel S, Homaeic A, Raju AB, Meher BR (2018) Estrogen: the necessary evil for human health, and ways to tame it. Biomed Pharmaco 102:403–411. https://doi.org/10.1016/j.biopha.2018.03.078. (PMID: 10.1016/j.biopha.2018.03.078)
Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3:1337–1362. https://doi.org/10.1002/cphy.c120033. (PMID: 10.1002/cphy.c12003323897689)
Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I (2016) Disease-induced skeletal muscle atrophy and fatigue. Med. Sci. Sports Exerc 48:2307–2319. https://doi.org/10.1249/MSS.0000000000000975. (PMID: 10.1249/MSS.0000000000000975)
Rogers NH, Perfield JW II, Strissel KJ, Obin MS, Greenberg AS (2009) Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinol 150:2161–2168. https://doi.org/10.1210/en.2008-1405. (PMID: 10.1210/en.2008-1405)
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ (2016) Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance-a qualitative review. Front Physiol 7:361. https://doi.org/10.3389/fphys.2016.00361. (PMID: 10.3389/fphys.2016.00361276100864997013)
Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023. (PMID: 10.1016/j.biocel.2013.04.023236651543775123)
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1:4–17. https://doi.org/10.1186/2044-5040-1-4. (PMID: 10.1186/2044-5040-1-4217980823143906)
Stengel SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188. https://doi.org/10.1152/japplphysiol.01260.2004. (PMID: 10.1152/japplphysiol.01260.200415746294)
Tang L, Li N, Jian WQ, Kang YT, Yin B, Sun SX, Guo JZ, Sun LJ, Ta DA (2017) Low-intensity pulsed ultrasound prevents muscle atrophy induced by type 1 diabetes in rats. Skelet Muscle 7:29–38. https://doi.org/10.1186/s13395-017-0145-7. (PMID: 10.1186/s13395-017-0145-7292730885741922)
Theilen NT, Kunkel GH, Tyagi SC (2017) The role of exercise and TFAM in preventing skeletal muscle atrophy. J Cell Physiol 232:2348–2358. https://doi.org/10.1002/jcp.25737. (PMID: 10.1002/jcp.25737279667835444986)
Wall BT, Dirks ML, Van Loon LJC (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12:898–906. https://doi.org/10.1016/j.arr.2013.07.003. (PMID: 10.1016/j.arr.2013.07.00323948422)
Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296:1486–1488. https://doi.org/10.1126/science.1069525. (PMID: 10.1126/science.106952512029139)
Grant Information:
11774213 National Natural Science Foundation of China; 2018JM1022 Natural Science Foundation of Shaanxi Province; GK201703092 Fundamental Research Funds for the Central Universities; GK201703091 Fundamental Research Funds for the Central Universities; QN2018004 Projection of Young Teachers Research Achievements Training
Contributed Indexing:
Keywords: Skeletal muscle atrophy,·Estrogen deficiency,·Ovariectomized rats,·Myostatin,·Signaling pathway; Weight-bearing exercise
Substance Nomenclature:
0 (Estrogens)
0 (Mstn protein, rat)
0 (Myostatin)
0 (Nerve Tissue Proteins)
0 (Foxo1 protein, rat)
EC 2.7.1.1 (mTOR protein, rat)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
EC 2.7.11.1 (TOR Serine-Threonine Kinases)
EC 2.7.11.30 (Activin Receptors, Type II)
EC 2.7.11.30 (activin receptor type II-B)
Entry Date(s):
Date Created: 20210331 Date Completed: 20210806 Latest Revision: 20221207
Update Code:
20240104
DOI:
10.1007/s13105-021-00794-0
PMID:
33788149
Czasopismo naukowe
Skeletal muscle atrophy (SMA) is a dominant symptom induced by estrogen deficiency which can lead to severe health problems of postmenopausal women. Furthermore, estrogen deficiency has severely compromised the maintenance of muscle stem cells as well as impairs self-renewal and differentiation into muscle fibers. Resistance training is commonly considered as a positive and useful intervention in accelerating the rate of muscle growth. As one of the resistance training, whether the weight-bearing exercise can alleviate SMA induced by estrogen deficiency has not been investigated. The rats were divided into 3 groups randomly: sham group, ovariectomized (OVX) group, and weight-bearing exercise (WBE) therapeutic group. The weight that rats were loaded was 35% of their body weight, and the rats were trained by treadmill training (5° slope, 20 m/min, 30 min/day, 6 days/week) for 8 weeks. After training, the quality and strength of skeletal muscle of the WBE rats were improved; meanwhile, the cross-sectional areas of the skeletal muscle were also increased. Moreover, the WBE activated Akt significantly, upregulated the expression of mTOR, and downregulated the expression of MSTN and its receptor ActRIIB and FoxO1, respectively. The SMA phenomena of rats which induced by estrogen deficiency were prevented effectively via WBE, and the MSTN/Akt/mTOR and FoxO1 signaling pathway may be the predominant way in this improvement.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies