Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra.

Tytuł:
Shade-induced reduction of stem nonstructural carbohydrates increases xylem vulnerability to embolism and impedes hydraulic recovery in Populus nigra.
Autorzy:
Tomasella M; Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.
Casolo V; Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, Udine, 33100, Italy.
Natale S; Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.
Petruzzellis F; Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.
Kofler W; Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria.
Beikircher B; Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria.
Mayr S; Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria.
Nardini A; Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.
Źródło:
The New phytologist [New Phytol] 2021 Jul; Vol. 231 (1), pp. 108-121. Date of Electronic Publication: 2021 May 15.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Embolism*
Populus*
Carbohydrates ; Droughts ; Water ; X-Ray Microtomography ; Xylem
References:
Plant Physiol. 2017 Feb;173(2):1177-1196. (PMID: 27927981)
New Phytol. 2020 Nov;228(3):884-897. (PMID: 32542732)
J Exp Bot. 2011 Oct;62(14):4701-18. (PMID: 21765173)
Plant Physiol. 2017 Nov;175(3):1135-1143. (PMID: 28982780)
Tree Physiol. 2013 Apr;33(4):398-408. (PMID: 23564693)
New Phytol. 2016 Jan;209(1):123-36. (PMID: 26378984)
New Phytol. 2013 Feb;197(3):850-861. (PMID: 23190200)
Nat Ecol Evol. 2017 Sep;1(9):1285-1291. (PMID: 29046541)
New Phytol. 2011 May;190(3):709-23. (PMID: 21054413)
Plant Cell Environ. 2014 Jan;37(1):153-61. (PMID: 23730972)
New Phytol. 2012 Jul;195(1):40-6. (PMID: 22594675)
Funct Plant Biol. 2009 Sep;36(9):815-825. (PMID: 32688691)
New Phytol. 2010 Oct;188(2):533-42. (PMID: 20673281)
Plant Physiol Biochem. 2017 Nov;120:232-241. (PMID: 29073538)
Am J Bot. 2009 Feb;96(2):409-19. (PMID: 21628196)
Plant Cell Environ. 2019 Sep;42(9):2584-2596. (PMID: 31083779)
Tree Physiol. 2020 Jul 30;40(8):1043-1057. (PMID: 32186735)
New Phytol. 2016 Jul;211(2):386-403. (PMID: 27061438)
Plant Cell Environ. 2011 Mar;34(3):514-24. (PMID: 21118423)
Plant Physiol. 2015 Mar;167(3):963-71. (PMID: 25588734)
New Phytol. 2021 Mar;229(6):3172-3183. (PMID: 33280134)
Tree Physiol. 2012 Apr;32(4):423-34. (PMID: 22544048)
Am J Bot. 2018 Feb;105(2):151-160. (PMID: 29578292)
Tree Physiol. 2011 Apr;31(4):361-8. (PMID: 21470981)
Plant Physiol. 1988 Nov;88(3):574-80. (PMID: 16666351)
New Phytol. 2013 Oct;200(2):322-329. (PMID: 23593942)
Plant Physiol. 2012 Oct;160(2):955-64. (PMID: 22837359)
Plant Cell Environ. 2019 Jun;42(6):1775-1787. (PMID: 30756400)
Tree Physiol. 2012 Jun;32(6):764-75. (PMID: 22302370)
New Phytol. 2017 Nov;216(3):720-727. (PMID: 28921550)
J Theor Biol. 2009 Jul 21;259(2):325-37. (PMID: 19361530)
Plant Cell Environ. 2017 Jun;40(6):831-845. (PMID: 27304704)
Tree Physiol. 2016 Nov;36(11):1400-1408. (PMID: 27539732)
J Exp Bot. 2018 Nov 26;69(22):5611-5623. (PMID: 30184113)
Plant Cell Environ. 2015 Jun;38(6):1060-8. (PMID: 25292257)
New Phytol. 2021 Jan;229(2):820-830. (PMID: 32890423)
New Phytol. 2008;178(4):719-739. (PMID: 18422905)
Plant Cell Environ. 2016 Nov;39(11):2350-2360. (PMID: 27187245)
Plant Cell Environ. 2017 Jan;40(1):4-10. (PMID: 27417527)
Biochem J. 1954 Jul;57(3):508-14. (PMID: 13181867)
Plant Cell Environ. 2014 Nov;37(11):2491-9. (PMID: 24588546)
Funct Plant Biol. 2012 Nov;39(11):839-850. (PMID: 32480834)
Trends Ecol Evol. 2011 Oct;26(10):523-32. (PMID: 21802765)
Plant Physiol Biochem. 2016 Sep;106:198-207. (PMID: 27174138)
Plant Cell Environ. 2010 Mar;33(3):382-93. (PMID: 19968826)
Plant Cell Environ. 2019 Aug;42(8):2422-2436. (PMID: 30997689)
Tree Physiol. 2001 Jan;21(1):27-33. (PMID: 11260821)
Sci Rep. 2017 Oct 30;7(1):14308. (PMID: 29085007)
Plant Physiol. 2017 Feb;173(2):1197-1210. (PMID: 28049739)
J Exp Bot. 2007;58(10):2609-15. (PMID: 17545227)
J Exp Bot. 2009;60(15):4363-70. (PMID: 19726633)
Plant Physiol Biochem. 2019 Dec;145:1-9. (PMID: 31665662)
Int J Mol Sci. 2019 Dec 24;21(1):. (PMID: 31878253)
Plant Cell Environ. 2013 Nov;36(11):1938-49. (PMID: 23701011)
Plant Physiol. 2018 Dec;178(4):1602-1613. (PMID: 30366979)
Front Plant Sci. 2013 Mar 18;4:56. (PMID: 23507674)
Funct Plant Biol. 2003 Mar;30(3):239-264. (PMID: 32689007)
Tree Physiol. 2019 May 1;39(5):717-728. (PMID: 30668841)
Front Plant Sci. 2020 Jul 16;11:1090. (PMID: 32765568)
Plant Cell Environ. 2011 Mar;34(3):501-13. (PMID: 21118422)
New Phytol. 2018 Apr;218(1):107-118. (PMID: 29424009)
PLoS One. 2015 Apr 13;10(4):e0119259. (PMID: 25867100)
Plant Physiol. 2017 Aug;174(4):2054-2061. (PMID: 28684434)
Plant Cell Environ. 2018 Dec;41(12):2718-2730. (PMID: 30071137)
New Phytol. 2020 Oct;228(1):70-81. (PMID: 32416019)
Plant Sci. 2011 Apr;180(4):604-11. (PMID: 21421408)
Contributed Indexing:
Keywords: black poplar; carbon starvation; hydraulic recovery; nonstructural carbohydrate (NSC); shading; xylem anatomy; xylem sap pH; xylem vulnerability
Substance Nomenclature:
0 (Carbohydrates)
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20210403 Date Completed: 20210610 Latest Revision: 20220731
Update Code:
20240105
PubMed Central ID:
PMC9290559
DOI:
10.1111/nph.17384
PMID:
33811346
Czasopismo naukowe
Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γ sap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γ sap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.
(© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies