Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice.

Tytuł :
Gain-of-function mutagenesis through activation tagging identifies XPB2 and SEN1 helicase genes as potential targets for drought stress tolerance in rice.
Autorzy :
Dutta M; Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
Moin M; Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India. .
Saha A; Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
Dutta D; Department of Chemical Engineering, Indian Institute of Technology, Bombay, Mumbai, 400076, India.
Bakshi A; Biotechnology Division, Indian Institute of Rice Research, Hyderabad, 500030, India.
Kirti PB; Agri Biotech Foundation, PJTS Agricultural University Campus, Hyderabad, 500030, India. .
Pokaż więcej
Źródło :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Apr 05. Date of Electronic Publication: 2021 Apr 05.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin, New York, Springer
References :
Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: An overview. Physiol Mol Biol Plants 19:307–321. https://doi.org/10.1007/s12298-013-0179-1. (PMID: 10.1007/s12298-013-0179-137156493715649)
Anjum SA, Xie XY, Chang WL et al (2011) Morphological, physiological and biochemical responses of plants to drought stress. African J Agric Res 6:2026–2032. https://doi.org/10.5897/AJAR10.027. (PMID: 10.5897/AJAR10.027)
Arciga-Reyes L, Wootton L, Kieffer M, Davies B (2006) UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J 47:480–489. https://doi.org/10.1111/j.1365-313X.2006.02802.x. (PMID: 10.1111/j.1365-313X.2006.02802.x16813578)
Baek W, Lim CW, Lee SC (2018) A DEAD-box RNA helicase, RH8, is critical for regulation of ABA signalling and the drought stress response via inhibition of PP2CA activity. Plant Cell Environ 41:1593–1604. https://doi.org/10.1111/pce.13200. (PMID: 10.1111/pce.1320029574779)
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 7:205–207. (PMID: 10.1007/BF00018060)
Bhatia PK, Wang Z, Friedberg EC (1996) DNA repair and transcription. Curr Opin Genet Dev 3:146–150. (PMID: 10.1016/S0959-437X(96)80043-8)
Blum A (2005) Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56: 11–1159.
Çakir B, Kiliçkaya O, Olcay AC (2013) Genome-wide analysis of Aux/IAA genes in Vitis vinifera: Cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol Plant 35:365–377. https://doi.org/10.1007/s11738-012-1079-7. (PMID: 10.1007/s11738-012-1079-7)
Chabouté ME, Clément B, Philipps G (2002) S phase and meristem-specific expression of the tobacco RNR1b gene is mediated by an E2F element located in the 5′ leader sequence. J Biol Chem 277:17845–17851. https://doi.org/10.1074/jbc.M200959200. (PMID: 10.1074/jbc.M20095920011884409)
Chang TT, Somrith B (1979) Genetic studies on the grain quality of rice. In: Proceedings of the workshop on chemical aspects of rice grain quality. pp 49–58.
Chen J, Chang SX, Anyia AO (2011) Gene discovery in cereals through quantitative trait loci and expression analysis in water-use efficiency measured by carbon isotope discrimination. Plant Cell Environ 34:2009–2023. https://doi.org/10.1111/j.1365-3040.2011.02397.x. (PMID: 10.1111/j.1365-3040.2011.02397.x21752030)
Costa RMA, Morgante PG, Berra CM et al (2001) The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development. Plant J 28:385–395. https://doi.org/10.1046/j.1365-313X.2001.01162.x. (PMID: 10.1046/j.1365-313X.2001.01162.x11737776)
Dai X, Xu Y, Ma Q et al (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751. https://doi.org/10.1104/pp.106.094532. (PMID: 10.1104/pp.106.094532172934351851822)
Ding S, He F, Tang W et al (2019) Identification of maize cc-type glutaredoxins that are associated with response to drought stress. Genes (Basel). https://doi.org/10.3390/genes10080610. (PMID: 10.3390/genes100806107206035)
Farquhar GD, Leary MHO, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol 9:121–137. (PMID: 10.1071/PP9820121)
Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537. (PMID: 10.1146/annurev.pp.40.060189.002443)
Fu J, Wang L, Wang Y et al (2014) Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Biochem 74:230–238. https://doi.org/10.1016/j.plaphy.2013.11.004. (PMID: 10.1016/j.plaphy.2013.11.00424316581)
Gao Q, Sun J, Tong H et al (2018) Evaluation of rice drought stress response using carbon isotope discrimination. Plant Physiol Biochem 132:80–88. https://doi.org/10.1016/j.plaphy.2018.08.030. (PMID: 10.1016/j.plaphy.2018.08.03030176431)
Guzder SN, Habraken Y, Sung P et al (1995) Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J Biol Chem. https://doi.org/10.1074/jbc.270.22.12973. (PMID: 10.1074/jbc.270.22.129737629061)
Han Z, Libri D, Porrua O (2017) Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination. Nucl Acids Res 45:1355–1370. https://doi.org/10.1093/nar/gkw1230. (PMID: 10.1093/nar/gkw123028180347)
Janiak A, Kwasniewski M, Szarejko I (2016) Gene expression regulation in roots under drought. J Exp Bot 67:1003–1014. https://doi.org/10.1093/jxb/erv512. (PMID: 10.1093/jxb/erv51226663562)
Jankowsky E, Fairman ME (2007) RNA helicases—one fold for many functions. Curr Opin Struct Biol 17:316–324. https://doi.org/10.1016/j.sbi.2007.05.007. (PMID: 10.1016/j.sbi.2007.05.00717574830)
Jeong D-H, An S, Kang H-G et al (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644. https://doi.org/10.1104/pp.014357. (PMID: 10.1104/pp.01435712481047166679)
Juliano BO (1979) The chemical basis of rice grain quality. In: Proceedings of the workshop on chemical aspects of rice grain quality. pp 69–90.
Kant P, Kant S, Gordon M et al (2007) Stress response suppressor1 and stress response suppressor2, two dead-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses 1 [OA ]. Plant Physiol 145:814–830. https://doi.org/10.1104/pp.107.099895. (PMID: 10.1104/pp.107.099895175565112048787)
Kassambara A, Mundt F (2016) Factoextra: extract and visualize the results of multivariate data analyses 1–74.
Leonaitė B, Han Z, Basquin J et al (2017) Sen1 has unique structural features grafted on the architecture of the Upf1-like helicase family. EMBO J 36:1590–1604. https://doi.org/10.15252/embj.201696174. (PMID: 10.15252/embj.201696174284084395452015)
Lescot M, Déhais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327. (PMID: 10.1093/nar/30.1.325)
Li W, Selvam K, Rahman SA, Li S (2016) Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucl Acids Res. https://doi.org/10.1093/nar/gkw428. (PMID: 10.1093/nar/gkw42828123038)
Linder P, Owttrim GW (2009) Plant RNA helicases: linking aberrant and silencing RNA. Trends Plant Sci 14:344–352. https://doi.org/10.1016/j.tplants.2009.03.007. (PMID: 10.1016/j.tplants.2009.03.00719446493)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
Manjulatha M, Sreevathsa R, Kumar AM et al (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125. https://doi.org/10.1007/s12033-013-9687-z. (PMID: 10.1007/s12033-013-9687-z23881361)
Martin B, Thorstenson YR (1988) Stable carbon isotope composition (δ 13 C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F 1 hybrid. Plant Physiol 88:213–217. https://doi.org/10.1104/pp.88.1.213. (PMID: 10.1104/pp.88.1.213166662691055551)
Martin-Tumasz S, Brow DA (2015) Saccharomyces cerevisiae sen1 helicase domain exhibits 5′- to 3′-helicase activity with a preference for translocation on DNA rather than RNA. J Biol Chem 290:22880–22889. https://doi.org/10.1074/jbc.M115.674002. (PMID: 10.1074/jbc.M115.674002261986384645616)
Mischo HE, Gómez-González B, Grzechnik P et al (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32. https://doi.org/10.1016/j.molcel.2010.12.007. (PMID: 10.1016/j.molcel.2010.12.007212117203314950)
Mischo HE, Chun Y, Harlen KM et al (2018) Cell-cycle modulation of transcription termination factor Sen1. Mol Cell 70:312-326.e7. https://doi.org/10.1016/j.molcel.2018.03.010. (PMID: 10.1016/j.molcel.2018.03.010296569245919780)
Moin M, Bakshi A, Saha A et al (2016a) Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water-use efficiency and abiotic stress tolerance in plants. Plant Cell Environ 39:2440–2459. https://doi.org/10.1111/pce.12796. (PMID: 10.1111/pce.1279627411514)
Moin M, Bakshi A, Saha A et al (2016b) Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Front Plant Sci 7:1–20. https://doi.org/10.3389/fpls.2016.01284. (PMID: 10.3389/fpls.2016.01284)
Moin M, Bakshi A, Madhav MS, Kirti PB (2017) Expression profiling of ribosomal protein gene family in dehydration stress responses and characterization of transgenic rice plants overexpressing RPL23A for water-use efficiency and tolerance to drought and salt stresses. Front Chem 5:1–16. https://doi.org/10.3389/fchem.2017.00097. (PMID: 10.3389/fchem.2017.00097)
Morgante PG, Berra CM, Nakabashi M et al (2005) Functional XPB/RAD25 redundancy in Arabidopsis genome: characterization of AtXPB2 and expression analysis. Gene 344:93–103. https://doi.org/10.1016/j.gene.2004.10.006. (PMID: 10.1016/j.gene.2004.10.00615656976)
Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998. https://doi.org/10.1093/jxb/ert208. (PMID: 10.1093/jxb/ert20823913954)
Narusaka Y, Nakashima K, Shinwari ZK et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148. https://doi.org/10.1046/j.1365-313X.2003.01708.x. (PMID: 10.1046/j.1365-313X.2003.01708.x12694590)
Nawaz G, Kang H (2019) Rice OsRH58, a chloroplast DEAD-box RNA helicase, improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation. BMC Plant Biol 19:1–11. https://doi.org/10.1186/s12870-018-1623-8. (PMID: 10.1186/s12870-018-1623-8)
Osmolovskaya N, Shumilina J, Kim A et al (2018) Methodology of drought stress research: experimental setup and physiological characterization. Int J Mol Sci 19:4089. (PMID: 10.3390/ijms19124089)
Park E, Guzder SN, Koken MHM et al (1992) RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci USA 89:11416–11420. https://doi.org/10.1073/pnas.89.23.11416. (PMID: 10.1073/pnas.89.23.114161333609)
Passricha N, Saifi SK, Gill SS et al (2018) Role of plant helicases in imparting salinity stress tolerance to plants. Elsevier Inc, London.
Qu S, Desai A, Wing R, Sundaresan V (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199. https://doi.org/10.1104/pp.107.111427. (PMID: 10.1104/pp.107.111427179935412230568)
R Core Team (2019) R: A language and environment for statistical computing. 3:1–16.
Rahman MA, Haque M, Sikdar B et al (2014) Correlation analysis of flag leaf with yield in several rice cultivars. J Life Earth Sci 8:49–54. https://doi.org/10.3329/jles.v8i0.20139. (PMID: 10.3329/jles.v8i0.20139)
Raikwar S, Srivastava VK, Gill SS et al (2015) Emerging importance of helicases in plant stress tolerance: characterization of oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses. Front Plant Sci 6:1–7. https://doi.org/10.3389/fpls.2015.01094. (PMID: 10.3389/fpls.2015.01094)
Richards JD, Cubeddu L, Roberts J et al (2008) The Archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 376:634–644. https://doi.org/10.1016/j.jmb.2007.12.019. (PMID: 10.1016/j.jmb.2007.12.01918177890)
Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006. (PMID: 10.1007/s00299-013-1414-5)
Saha A, Das S, Moin M et al (2017) Genome-wide identification and comprehensive expression profiling of ribosomal protein small subunit (RPS) genes and their comparative analysis with the large subunit (RPL) genes in rice. Front Plant Sci 8:1–21. https://doi.org/10.3389/fpls.2017.01553. (PMID: 10.3389/fpls.2017.01553)
Sakai T, Takahashi Y, Nagata T (1996) Analysis of the promoter of the auxin-inducible gene, parC, of tobacco. Plant Cell Physiol 37:906–913. https://doi.org/10.1093/oxfordjournals.pcp.a029038. (PMID: 10.1093/oxfordjournals.pcp.a0290388979393)
Sariki SK, Sahu PK, Golla U et al (2016) Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. FEBS J 283:4056–4083. https://doi.org/10.1111/febs.13917. (PMID: 10.1111/febs.1391727718307)
Seraj ZI, Elias SM, Biswas S, Tuteja N (2018) Helicases and their importance in abiotic stresses.
Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot. https://doi.org/10.1093/jexbot/53.366.33. (PMID: 10.1093/jexbot/53.366.3311741038)
Shen J, Lv B, Luo L et al (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:1–14. https://doi.org/10.1038/srep40641. (PMID: 10.1038/srep40641)
Shivakumara TN, Sreevathsa R, Dash PK et al (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-02589-0. (PMID: 10.1038/s41598-017-02589-0)
Singha DL, Tuteja N, Boro D (2017) Heterologous expression of PDH47 confers drought tolerance in indica rice. Plant Cell Tissue Organ Cult 130:577–589. https://doi.org/10.1007/s11240-017-1248-x. (PMID: 10.1007/s11240-017-1248-x)
Sloan KE, Bohnsack MT (2018) Unravelling the mechanisms of RNA helicase regulation. Trends Biochem Sci 43:237–250. https://doi.org/10.1016/j.tibs.2018.02.001. (PMID: 10.1016/j.tibs.2018.02.00129486979)
Sowbhagya CM, Bhattacharya KR (1971) A simplified colorimetric method for determination of amylose content in rice. Starch Stärke 23:53–56. https://doi.org/10.1002/star.19710230206. (PMID: 10.1002/star.19710230206)
Sreenivasulu N, Harshavardhan VT, Govind G et al (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273. https://doi.org/10.1016/j.gene.2012.06.076. (PMID: 10.1016/j.gene.2012.06.07622771691)
Srivastav A, Mehta S, Lindlof A, Bhargava S (2010) Over-represented promoter motifs in abiotic stress-induced DREB genes of rice and sorghum and their probable role in regulation of gene expression. Plant Signal Behav 5:775–784. https://doi.org/10.4161/psb.5.7.11769. (PMID: 10.4161/psb.5.7.117693115025)
Steinmetz EJ, Warren CL, Kuehner JN et al (2006) Genome-wide distribution of yeast RNA polymerase II and Its control by Sen1 helicase. Mol Cell 24:735–746. https://doi.org/10.1016/j.molcel.2006.10.023. (PMID: 10.1016/j.molcel.2006.10.02317157256)
Tani H, Chen X, Nurmberg P et al (2004) Activation tagging in plants: a tool for gene discovery. Funct Integr Genomics 4:258–266. https://doi.org/10.1007/s10142-004-0112-3. (PMID: 10.1007/s10142-004-0112-315156357)
Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54:2201–2214. https://doi.org/10.1093/jxb/erg246. (PMID: 10.1093/jxb/erg24614504296)
Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127. https://doi.org/10.1111/tpj.12277. (PMID: 10.1111/tpj.1227723808500)
Umate P, Tuteja R, Tuteja N (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73:449–465. https://doi.org/10.1007/s11103-010-9632-5. (PMID: 10.1007/s11103-010-9632-520383562)
Wan S, Wu J, Zhang Z et al (2009) Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol 69:69–80. https://doi.org/10.1007/s11103-008-9406-5. (PMID: 10.1007/s11103-008-9406-518830797)
Wei Q, Cao H, Li Z et al (2013) Identification of an AtCRN1-like chloroplast protein BeCRN1 and its distinctive role in chlorophyll breakdown during leaf senescence in bamboo (Bambusa emeiensis ‘Viridiflavus’). Plant Cell Tissue Organ Cult 114:1–10. https://doi.org/10.1007/s11240-013-0298-y. (PMID: 10.1007/s11240-013-0298-y)
Weigel D, Ahn JH, Blázquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013. https://doi.org/10.1104/pp.122.4.1003. (PMID: 10.1104/pp.122.4.1003107594961539247)
Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. https://doi.org/10.1016/0169-7439(87)80084-9. (PMID: 10.1016/0169-7439(87)80084-9)
Yang R, Howe JA, Golden BR (2018) Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). J Agron Crop Sci. https://doi.org/10.1111/jac.12327. (PMID: 10.1111/jac.12327)
Yano K, Morinaka Y, Wang F et al (2019) GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc Natl Acad Sci USA 116:2162–21267. https://doi.org/10.1073/pnas.1904964116. (PMID: 10.1073/pnas.1904964116)
Yin X, Huang L, Zhang X et al (2017) Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. Protoplasma 254:2247–2261. https://doi.org/10.1007/s00709-017-1116-x. (PMID: 10.1007/s00709-017-1116-x28470373)
Yoine M, Nishii T, Nakamura K (2006) Arabidopsis UPF1 RNA helicase for nonsense-mediated mRNA decay is involved in seed size control and is essential for growth. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcj035. (PMID: 10.1093/pcp/pcj03516540482)
Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory Manual for physiological studies of rice 1–83.
Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. (PMID: 10.1016/j.pbi.2014.07.009)
Yunes JA, Neto GC, da Silva MJ et al (1994) The transcriptional activator Opaque2 recognizes two different target sequences in the 22kD-like alpha-prolamin genes. Plant Cell 6:237–249. https://doi.org/10.1105/tpc.6.2.237. (PMID: 10.1105/tpc.6.2.2378148647160430)
Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119. (PMID: 10.1016/j.fcr.2005.08.018)
Zhang J, Han C, Liu Z (2009) Absorption spectrum estimating rice chlorophyll concentration: preliminary investigations. J Plant Breed Crop Sci 1:223–229.
Zhang C, Shi S, Wang B, Zhao J (2018) Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG—induced drought stress. Acta Physiol Plant 40:1–15. https://doi.org/10.1007/s11738-017-2597-0. (PMID: 10.1007/s11738-017-2597-0)
Zhou S, Zhang H, Li R et al (2017) Function identification of the nucleotides in key cis-element of dysfunctional tapetum1 (DYT1) promoter. Front Plant Sci 8:1–8. https://doi.org/10.3389/fpls.2017.00153. (PMID: 10.3389/fpls.2017.00153)
Zhu M, Chen G, Dong T et al (2015) SlDEAD31, a putative DEAD-Box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS ONE 10:1–20. https://doi.org/10.1371/journal.pone.0133849. (PMID: 10.1371/journal.pone.0133849)
Grant Information :
BT/PR13105/AGR/02/684/2009 Department of Biotechnology, Government of India; IFA17-LSPA67 Department of Science and Technology, Government of India
Entry Date(s) :
Date Created: 20210406 Latest Revision: 20210406
Update Code :
20210406
DOI :
10.1007/s00122-021-03823-0
PMID :
33821294
Czasopismo naukowe
Key Message: XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies