Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs.

Tytuł:
Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs.
Autorzy:
Trucks S; Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.
Hanspach G; Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.
Hengesbach M; Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.
Źródło:
Nucleic acids research [Nucleic Acids Res] 2021 May 07; Vol. 49 (8), pp. 4629-4642.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 1992- : Oxford : Oxford University Press
Original Publication: London, Information Retrieval ltd.
MeSH Terms:
Hydro-Lyases/*metabolism
Microtubule-Associated Proteins/*metabolism
Nuclear Proteins/*metabolism
RNA, Small Nucleolar/*metabolism
RNA-Binding Proteins/*metabolism
Ribonucleoproteins, Small Nuclear/*metabolism
Ribonucleoproteins, Small Nucleolar/*metabolism
Saccharomyces cerevisiae/*metabolism
Saccharomyces cerevisiae Proteins/*metabolism
Catalysis ; Escherichia coli/metabolism ; Fluorescence Resonance Energy Transfer ; Gene Expression ; Hydro-Lyases/genetics ; In Vitro Techniques ; Inverted Repeat Sequences ; Microtubule-Associated Proteins/genetics ; Models, Molecular ; Nuclear Proteins/genetics ; Protein Domains ; RNA Folding ; RNA, Small Nucleolar/genetics ; RNA-Binding Proteins/genetics ; Recombinant Proteins ; Ribonucleoproteins, Small Nuclear/genetics ; Ribonucleoproteins, Small Nucleolar/genetics ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/genetics ; RNA, Guide, CRISPR-Cas Systems
References:
Nat Methods. 2012 Dec;9(12):1218-25. (PMID: 23142871)
Cell. 1996 Sep 6;86(5):823-34. (PMID: 8797828)
RNA Biol. 2020 Nov 10;:1-10. (PMID: 33111609)
Biophys J. 2006 Sep 1;91(5):1941-51. (PMID: 16766620)
Cell. 1997 May 30;89(5):799-809. (PMID: 9182768)
J Mol Biol. 2011 Sep 2;411(5):927-42. (PMID: 21708174)
Genes Dev. 2005 May 15;19(10):1238-48. (PMID: 15870259)
Front Oncol. 2019 Jul 09;9:587. (PMID: 31338327)
Nucleic Acids Res. 2012 Nov;40(21):10925-36. (PMID: 23012266)
J Biol Chem. 1998 May 1;273(18):10868-73. (PMID: 9556561)
Nat Commun. 2018 Jul 30;9(1):2985. (PMID: 30061688)
Mol Cell. 2010 Mar 12;37(5):597-606. (PMID: 20227365)
Enzymes. 2017;41:151-167. (PMID: 28601221)
J Am Chem Soc. 2012 Mar 21;134(11):5187-95. (PMID: 22356317)
Chromosoma. 2005 May;114(1):1-14. (PMID: 15770508)
Structure. 2004 May;12(5):893-903. (PMID: 15130481)
RNA. 2018 Aug;24(8):1106-1117. (PMID: 29871894)
EMBO J. 2004 Apr 21;23(8):1857-67. (PMID: 15044956)
Nucleic Acids Res. 2001 Jul 1;29(13):2733-46. (PMID: 11433018)
Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):397-414. (PMID: 22065625)
Mol Cell Biol. 2000 Dec;20(23):9028-40. (PMID: 11074001)
Genes Dev. 2011 Nov 15;25(22):2409-21. (PMID: 22085967)
Nat Struct Mol Biol. 2007 Dec;14(12):1189-95. (PMID: 18059286)
J Biol Chem. 1992 Feb 15;267(5):2955-9. (PMID: 1737751)
Biochimie. 1995;77(1-2):139-41. (PMID: 7541252)
J Cell Biol. 1992 Nov;119(4):737-47. (PMID: 1429834)
RNA. 2018 Apr;24(4):499-512. (PMID: 29348140)
EMBO J. 1999 Nov 1;18(21):6119-33. (PMID: 10545122)
Eur J Biochem. 1992 Oct 15;209(2):541-8. (PMID: 1425660)
RNA. 2019 Oct;25(10):1393-1404. (PMID: 31311819)
Biochimie. 1995;77(1-2):142-4. (PMID: 7599271)
Hum Mol Genet. 2010 Mar 1;19(5):825-36. (PMID: 20008900)
EMBO J. 1992 Jul;11(7):2655-64. (PMID: 1628625)
EMBO J. 2005 Jul 6;24(13):2403-13. (PMID: 15962000)
Nat Struct Mol Biol. 2009 Jul;16(7):740-6. (PMID: 19478803)
ACS Chem Biol. 2018 Sep 21;13(9):2472-2483. (PMID: 30060648)
Mol Cell Biol. 1987 Aug;7(8):2947-55. (PMID: 2823109)
Nature. 2006 Sep 21;443(7109):302-7. (PMID: 16943774)
PLoS One. 2013 Jul 29;8(7):e70313. (PMID: 23922977)
Mol Cell. 2006 Jan 20;21(2):249-60. (PMID: 16427014)
Mol Cell. 2009 May 14;34(4):427-39. (PMID: 19481523)
EMBO J. 2011 Jan 5;30(1):79-89. (PMID: 21131909)
Nucleic Acids Res. 2018 Jan 25;46(2):905-916. (PMID: 29177505)
Trends Biochem Sci. 2013 Apr;38(4):210-8. (PMID: 23391857)
Nature. 2018 May;557(7704):190-195. (PMID: 29695869)
Wiley Interdiscip Rev RNA. 2015 Mar-Apr;6(2):173-89. (PMID: 25363811)
Substance Nomenclature:
0 (Microtubule-Associated Proteins)
0 (NOP10 protein, S cerevisiae)
0 (Nuclear Proteins)
0 (RNA, Small Nucleolar)
0 (RNA-Binding Proteins)
0 (Recombinant Proteins)
0 (Ribonucleoproteins, Small Nuclear)
0 (Ribonucleoproteins, Small Nucleolar)
0 (Saccharomyces cerevisiae Proteins)
136111-26-7 (NHP2 protein, S cerevisiae)
146888-26-8 (GAR1 protein, S cerevisiae)
EC 4.2.1.- (Hydro-Lyases)
EC 4.2.1.70 (CBF5 protein, S cerevisiae)
Entry Date(s):
Date Created: 20210406 Date Completed: 20210616 Latest Revision: 20240221
Update Code:
20240221
PubMed Central ID:
PMC8096250
DOI:
10.1093/nar/gkab177
PMID:
33823543
Czasopismo naukowe
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.
(© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies