Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity.

Tytuł:
Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity.
Autorzy:
Tkachenko AV; Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973; .
Maslov S; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801; .; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Elbanna A; Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Wong GN; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Weiner ZJ; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Goldenfeld N; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801.; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Źródło:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Apr 27; Vol. 118 (17).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : National Academy of Sciences
MeSH Terms:
COVID-19*/epidemiology
COVID-19*/immunology
COVID-19*/transmission
Epidemics*
Immunity, Herd*
Models, Immunological*
SARS-CoV-2/*immunology
Humans ; United States/epidemiology
References:
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128. (PMID: 12241447)
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):055103. (PMID: 12059627)
Rep Prog Phys. 2014;77(2):026602. (PMID: 24444713)
Int J Infect Dis. 2020 Dec;101:138-148. (PMID: 33007452)
Nat Commun. 2020 Dec 3;11(1):6189. (PMID: 33273462)
Infect Dis Model. 2017 Aug;2(3):379-398. (PMID: 29250607)
Phys Rev Lett. 2001 Apr 2;86(14):3200-3. (PMID: 11290142)
Infect Dis Model. 2018 Sep 25;3:192-248. (PMID: 30839899)
J Theor Biol. 2012 Sep 21;309:176-84. (PMID: 22721993)
J Theor Biol. 2014 Jun 7;350:70-80. (PMID: 24444766)
Proc Biol Sci. 2007 Feb 22;274(1609):599-604. (PMID: 17476782)
Bull Math Biol. 2012 Sep;74(9):2125-41. (PMID: 22829179)
Infect Dis Model. 2020 Jan 08;5:129-141. (PMID: 31956741)
Proc Biol Sci. 2006 Nov 7;273(1602):2743-8. (PMID: 17015324)
Science. 2020 Aug 14;369(6505):846-849. (PMID: 32576668)
J Math Biol. 2012 Aug;65(2):237-62. (PMID: 21830057)
PLoS One. 2020 Oct 14;15(10):e0239678. (PMID: 33052918)
Proc Biol Sci. 2013 Jun 26;280(1765):20131037. (PMID: 23804621)
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26190-26196. (PMID: 33004629)
J Infect. 2020 Dec;81(6):e10-e12. (PMID: 32961253)
Nature. 2005 Nov 17;438(7066):293-5. (PMID: 16292292)
J Theor Biol. 2011 Feb 21;271(1):166-80. (PMID: 21130777)
Math Biosci. 2006 Oct;203(2):301-18. (PMID: 16540129)
Int J Environ Res Public Health. 2018 Oct 26;15(11):. (PMID: 30373151)
Wellcome Open Res. 2020 Apr 9;5:67. (PMID: 32685698)
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066112. (PMID: 11736241)
J R Soc Interface. 2013 Jan 6;10(78):20120578. (PMID: 23034353)
PLoS One. 2007 Aug 22;2(8):e758. (PMID: 17712406)
Science. 2006 Jan 6;311(5757):88-90. (PMID: 16400149)
Science. 2021 Jan 15;371(6526):. (PMID: 33234698)
J Biol Dyn. 2010 Sep;4(5):478-89. (PMID: 22877143)
Nature. 2004 May 13;429(6988):180-4. (PMID: 15141212)
Emerg Infect Dis. 2004 Feb;10(2):256-60. (PMID: 15030693)
Physica D. 2006 Mar 15;215(2):146-158. (PMID: 32287555)
Nature. 2005 Nov 17;438(7066):355-9. (PMID: 16292310)
J Theor Biol. 2022 May 7;540:111063. (PMID: 35189135)
Euro Surveill. 2020 Jun;25(24):. (PMID: 32583766)
J R Soc Interface. 2007 Oct 22;4(16):879-91. (PMID: 17640863)
Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. (PMID: 17878137)
Science. 2001 May 18;292(5520):1316-7. (PMID: 11360990)
Infect Dis Model. 2017 Jul 12;2(3):353-367. (PMID: 29928747)
J R Soc Interface. 2005 Sep 22;2(4):295-307. (PMID: 16849187)
Nature. 2005 May 12;435(7039):207-11. (PMID: 15889093)
Math Biosci. 2008 Oct;215(2):177-85. (PMID: 18722386)
J Theor Biol. 2005 Jan 7;232(1):71-81. (PMID: 15498594)
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12640-5. (PMID: 19617555)
Contributed Indexing:
Keywords: COVID-19; epidemic theory; heterogeneity; overdispersion
Entry Date(s):
Date Created: 20210409 Date Completed: 20210419 Latest Revision: 20231111
Update Code:
20240104
PubMed Central ID:
PMC8092384
DOI:
10.1073/pnas.2015972118
PMID:
33833080
Czasopismo naukowe
Epidemics generally spread through a succession of waves that reflect factors on multiple timescales. On short timescales, superspreading events lead to burstiness and overdispersion, whereas long-term persistent heterogeneity in susceptibility is expected to lead to a reduction in both the infection peak and the herd immunity threshold (HIT). Here, we develop a general approach to encompass both timescales, including time variations in individual social activity, and demonstrate how to incorporate them phenomenologically into a wide class of epidemiological models through reparameterization. We derive a nonlinear dependence of the effective reproduction number [Formula: see text] on the susceptible population fraction S. We show that a state of transient collective immunity (TCI) emerges well below the HIT during early, high-paced stages of the epidemic. However, this is a fragile state that wanes over time due to changing levels of social activity, and so the infection peak is not an indication of long-lasting herd immunity: Subsequent waves may emerge due to behavioral changes in the population, driven by, for example, seasonal factors. Transient and long-term levels of heterogeneity are estimated using empirical data from the COVID-19 epidemic and from real-life face-to-face contact networks. These results suggest that the hardest hit areas, such as New York City, have achieved TCI following the first wave of the epidemic, but likely remain below the long-term HIT. Thus, in contrast to some previous claims, these regions can still experience subsequent waves.
Competing Interests: The authors declare no competing interest.
(Copyright © 2021 the Author(s). Published by PNAS.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies