Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Discovery of a susceptibility factor for Fusarium head blight on chromosome 7A of wheat.

Tytuł :
Discovery of a susceptibility factor for Fusarium head blight on chromosome 7A of wheat.
Autorzy :
Chhabra B; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
Tiwari V; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
Gill BS; Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
Dong Y; Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
Rawat N; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA. .
Pokaż więcej
Źródło :
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2021 Apr 08. Date of Electronic Publication: 2021 Apr 08.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin, New York, Springer
References :
Andersen EJ, Ali S, Byamukama E et al (2018) Disease resistance mechanisms in plants. Genes (Basel) 9:339. https://doi.org/10.3390/genes9070339. (PMID: 10.3390/genes9070339)
Bai G, Shaner GE (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766. https://doi.org/10.1094/PD-78-0760. (PMID: 10.1094/PD-78-0760)
Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161. https://doi.org/10.1146/annurev.phyto.42.040803.140340. (PMID: 10.1146/annurev.phyto.42.040803.14034015283663)
Bai G-H, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing fusarium graminearum causes initial infection but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98. https://doi.org/10.1023/A:1014419323550. (PMID: 10.1023/A:101441932355012000132)
Buerstmayr M, Steiner B, Buerstmayr H (2019) Breeding for Fusarium head blight resistance in wheat—progress and challenges. Plant Breed 139:429–454. https://doi.org/10.1111/pbr.12797. (PMID: 10.1111/pbr.12797)
Büschges R, Hollricher K, Panstruga R et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705. https://doi.org/10.1016/S0092-8674(00)81912-1. (PMID: 10.1016/S0092-8674(00)81912-19054509)
Chen Y, Kistler HC, Ma Z (2019) Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annu Rev Phytopathol 57:15–39. https://doi.org/10.1146/annurev-phyto-082718-100318. (PMID: 10.1146/annurev-phyto-082718-10031830893009)
Consortium (IWGSC) TIWGS, Appels R, Eversole K et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661. https://doi.org/10.1126/science.aar7191.
Cutler HG (1988) Trichothecenes and their role in the expression of plant disease. In: Biotechnology for crop protection. American Chemical Society, pp 50–72.
Darrier B, Rimbert H, Balfourier F et al (2017) High-resolution mapping of crossover events in the hexaploid wheat genome suggests a universal recombination mechanism. Genetics 206:1373–1388. https://doi.org/10.1534/genetics.116.196014. (PMID: 10.1534/genetics.116.196014285334385500137)
Desjardins AE, Proctor RH, McCormick SP, Hohn TM (1997) Reduced virulence of trichothecene antibiotic-nonproducing mutants of Gibberella zeae in wheat field tests. MPMI 9:775–781. https://doi.org/10.1094/MPMI-9-0775. (PMID: 10.1094/MPMI-9-0775)
Eckardt NA (2002) Plant disease susceptibility genes? Plant Cell 14:1983–1986. https://doi.org/10.1105/tpc.140910. (PMID: 10.1105/tpc.14091012215498543214)
Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307. https://doi.org/10.1093/oxfordjournals.jhered.a023003. (PMID: 10.1093/oxfordjournals.jhered.a023003)
Engelhardt S, Stam R, Hückelhoven R (2018) Good riddance? Breaking disease susceptibility in the era of new breeding technologies. Agron J 8:114. https://doi.org/10.3390/agronomy8070114. (PMID: 10.3390/agronomy8070114)
Fabre F, Rocher F, Alouane T et al (2020) Searching for FHB resistances in bread wheat: susceptibility at the crossroad. Front Plant Sci 11:731. https://doi.org/10.3389/fpls.2020.00731. (PMID: 10.3389/fpls.2020.00731325956647300258)
Garvin DF, Porter H, Blankenheim ZJ et al (2015) A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat. Genome 58:479–488. https://doi.org/10.1139/gen-2015-0088. (PMID: 10.1139/gen-2015-008826524120)
Gorash A, Armonienė R, Kazan K (2020) Can effectoromics and loss-of-susceptibility be exploited for improving Fusarium head blight resistance in wheat? Crop J 9:1–16. https://doi.org/10.1016/j.cj.2020.06.012. (PMID: 10.1016/j.cj.2020.06.012)
Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525. https://doi.org/10.1111/j.1364-3703.2004.00252.x. (PMID: 10.1111/j.1364-3703.2004.00252.x20565626)
Hales B, Steed A, Giovannelli V et al (2020) Type II Fusarium head blight susceptibility conferred by a region on wheat chromosome 4D. J Exp Bot 71:4703–4714. https://doi.org/10.1093/jxb/eraa226. (PMID: 10.1093/jxb/eraa226324730167410183)
Jansen C, von Wettstein D, Schäfer W et al (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. PNAS 102:16892–16897. https://doi.org/10.1073/pnas.0508467102. (PMID: 10.1073/pnas.050846710216263921)
Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299. https://doi.org/10.1105/tpc.17.00579. (PMID: 10.1105/tpc.17.00579293827715868693)
Ma H-X, Bai G-H, Gill BS, Hart LP (2006) Deletion of a chromosome arm altered wheat resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese spring. Plant Dis 90:1545–1549. https://doi.org/10.1094/PD-90-1545. (PMID: 10.1094/PD-90-154530780974)
McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis 81:1340–1348. https://doi.org/10.1094/PDIS.1997.81.12.1340. (PMID: 10.1094/PDIS.1997.81.12.134030861784)
Mesterházy Á, Bartók T, Mirocha CG, Komoróczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x. (PMID: 10.1046/j.1439-0523.1999.118002097.x)
Mirocha CJ, Kolaczkowski E, Xie W et al (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using Gas Chromatography/Mass Spectrometry. J Agric Food Chem 46:1414–1418. https://doi.org/10.1021/jf970857o. (PMID: 10.1021/jf970857o)
Parry DW, Jenkinson P, McLEOD L (1995) Fusarium ear blight (scab) in small grain cereals? A review. Plant Pathol 44:207–238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x. (PMID: 10.1111/j.1365-3059.1995.tb02773.x)
Pavan S, Jacobsen E, Visser RGF, Bai Y (2009) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breeding 25:1. https://doi.org/10.1007/s11032-009-9323-6. (PMID: 10.1007/s11032-009-9323-6)
Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117(7):1155–1166. (PMID: 10.1007/s00122-008-0853-9)
Raupp JW (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L.em Thell., and its relatives. Wheat Info Serv 81:50–55.
Rawat N, Pumphrey MO, Liu S et al (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580. https://doi.org/10.1038/ng.3706. (PMID: 10.1038/ng.370627776114)
Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378. https://doi.org/10.1080/02652030500058403. (PMID: 10.1080/0265203050005840316019807)
Saintenac C, Falque M, Martin OC et al (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403. (PMID: 10.1534/genetics.108.097469)
Salgado JD, Madden LV, Paul PA (2014) Efficacy and economics of integrating in-field and harvesting strategies to manage Fusarium head blight of wheat. Plant Dis 98:1407–1421. https://doi.org/10.1094/PDIS-01-14-h093-RE. (PMID: 10.1094/PDIS-01-14-h093-RE30703933)
Semagn K, Skinnes H, Bjørnstad Å et al (2007) Quantitative Trait Loci controlling Fusarium head blight resistance and low Deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303. (PMID: 10.2135/cropsci2006.02.0095)
Simko I, Piepho H-P (2011) The area under the disease progress stairs: calculation, advantage, and application. Phytopathology 102:381–389. https://doi.org/10.1094/PHYTO-07-11-0216. (PMID: 10.1094/PHYTO-07-11-0216)
Snijders CHA (1990) Fusarium head blight and mycotoxin contamination of wheat, a review. Neth J Plant Pathol 96:187–198. https://doi.org/10.1007/BF01974256. (PMID: 10.1007/BF01974256)
Tiwari VK, Heesacker A, Riera-Lizarazu O et al (2016) A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J 86:195–207. https://doi.org/10.1111/tpj.13153. (PMID: 10.1111/tpj.131532694552426945524)
van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581. https://doi.org/10.1146/annurev-phyto-102313-045854. (PMID: 10.1146/annurev-phyto-102313-04585425001453)
Waldron BL, Moreno-Sevilla B, Anderson JA et al (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811. https://doi.org/10.2135/cropsci1999.0011183X003900030032x. (PMID: 10.2135/cropsci1999.0011183X003900030032x)
Wang Y, Tiwari VK, Rawat N et al (2016) GSP: a web-based platform for designing genome-specific primers in polyploids. Bioinformatics 32:2382–2383. https://doi.org/10.1093/bioinformatics/btw134. (PMID: 10.1093/bioinformatics/btw134)
Wang H, Sun S, Ge W et al (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:844. https://doi.org/10.1126/science.aba5435. (PMID: 10.1126/science.aba5435)
Wegulo SN, Bockus WW, Nopsa JH et al (2010) Effects of integrating cultivar resistance and fungicide application on Fusarium head blight and deoxynivalenol in winter wheat. Plant Dis 95:554–560. https://doi.org/10.1094/PDIS-07-10-0495. (PMID: 10.1094/PDIS-07-10-0495)
Wilson W, Dahl B, Nganje W (2018) Economic costs of Fusarium Head Blight, scab and deoxynivalenol. World Mycotoxin J 11:291–302. https://doi.org/10.3920/WMJ2017.2204. (PMID: 10.3920/WMJ2017.2204)
Zhang M, Zhang R, Yang J et al (2010) (2010) Identification of a new QTL for Fusarium head blight resistance in the wheat genotype “Wangshuibai.” Mol Biol Rep 37:1031–1035. https://doi.org/10.1007/s11033-009-9809-7. (PMID: 10.1007/s11033-009-9809-719757165)
Grant Information :
1943155 National Science Foundation; 2020-67013-31460 National Institute of Food and Agriculture; 2020-67013-32558 National Institute of Food and Agriculture; 59-0206-0-177 Agricultural Research Service (US); 59-0200-6-018 Agricultural Research Service
Entry Date(s) :
Date Created: 20210409 Latest Revision: 20210409
Update Code :
20210409
DOI :
10.1007/s00122-021-03825-y
PMID :
33834252
Czasopismo naukowe
Key Message: Discovery and mapping of a susceptibility factor located on the short arm of wheat chromosome 7A whose deletion makes plants resistant to Fusarium head blight. Fusarium head blight (FHB) disease of wheat caused by Fusarium spp. deteriorates both quantity and quality of the crop. Manipulation of susceptibility factors, the plant genes facilitating disease development, offers a novel and alternative strategy for enhancing FHB resistance in plants. In this study, a major effect susceptibility gene for FHB was identified on the short arm of chromosome 7A (7AS). Nullisomic-tetrasomic lines for homoeologous group-7 of wheat revealed dosage effect of the gene, with tetrasomic 7A being more susceptible than control Chinese Spring wheat, qualifying it as a genuine susceptibility factor. Five chromosome 7A inter-varietal substitution lines and a tetraploid Triticum dicoccoides 7A substitution line showed similar susceptibility as that of Chinese Spring, indicating toward the commonality of the susceptibility factor among these diverse genotypes. The susceptibility factor was named as Sf-Fhb-7AS and mapped on chromosome 7AS to a 48.5-50.5 Mb peri-centromeric region between del7AS-3 and del7AS-8. Our results showed that deletion of Sf-Fhb-7AS imparts 50-60% type 2 FHB resistance and its manipulation can be used to enhance resistance against FHB in wheat.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies