Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Potentially toxic elements concentrations in schoolyard soils in the city of Coronel, Chile.

Tytuł:
Potentially toxic elements concentrations in schoolyard soils in the city of Coronel, Chile.
Autorzy:
Tume P; Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile. .; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile. .
Acevedo V; Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
Roca N; Dept. Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain.
Ferraro FX; Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
Bech J; Dept. Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain.
Źródło:
Environmental geochemistry and health [Environ Geochem Health] 2022 May; Vol. 44 (5), pp. 1521-1535. Date of Electronic Publication: 2021 Apr 10.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
MeSH Terms:
Metals, Heavy*/analysis
Soil Pollutants*/analysis
Chile ; Cities ; Environmental Monitoring ; Lead/analysis ; Risk Assessment ; Soil
References:
Acosta, J. A., Cano, A. F., Arocena, J. M., Debela, F., & Martínez-Martínez, S. (2009). Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149(1–2), 101–109. https://doi.org/10.1016/j.geoderma.2008.11.034 . (PMID: 10.1016/j.geoderma.2008.11.034)
Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis, 35(11–12), 1615–1634. https://doi.org/10.1081/css-120038558 . (PMID: 10.1081/css-120038558)
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society Series B (Methodological), 44(2), 139–177. (PMID: 10.1111/j.2517-6161.1982.tb01195.x)
Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in english soil. Science of The Total Environment., 454–455, 604–618. https://doi.org/10.1016/j.scitotenv.2013.03.005 . (PMID: 10.1016/j.scitotenv.2013.03.005)
Berasaluce, M., Mondaca, P., Schuhmacher, M., Bravo, M., Sauvé, S., Navarro-Villarroel, C., Dovletyarova, E. A., & Neaman, A. (2019). Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile. Journal of Trace Elements in Medicine and Biology, 54, 156–162. https://doi.org/10.1016/j.jtemb.2019.04.006 . (PMID: 10.1016/j.jtemb.2019.04.006)
Bochetti, M. J., Muñoz, E., Tume, P., & Bech, J. (2018). Analysis of three indirect methods for estimating the evapotranspiration in the agricultural zone of Chillán. Chile Obras y Proyectos, 19, 74–81.
Cabral-Pinto, M. M. S., Inácio, M., Neves, O., Almeida, A. A., Pinto, E., Oliveiros, B., & Ferreira da Silva, E. A. (2019). Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Exposure and Health. https://doi.org/10.1007/s12403-019-00323-x . (PMID: 10.1007/s12403-019-00323-x)
Cabral Pinto, M. M. S., Silva, M. M. V. G., Ferreira da Silva, E. A., Dinis, P. A., & Rocha, F. (2017). Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Journal of Geochemical Exploration, 183, 140–151. https://doi.org/10.1016/j.gexplo.2017.06.004 . (PMID: 10.1016/j.gexplo.2017.06.004)
Cachada, A., Dias, A. C., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment, 185(1), 279–294. https://doi.org/10.1007/s10661-012-2553-9 . (PMID: 10.1007/s10661-012-2553-9)
Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA, 139, 44–52. https://doi.org/10.1016/j.catena.2015.12.001 . (PMID: 10.1016/j.catena.2015.12.001)
Davidson, C. M., Duncan, C., MacNab, C., Pringle, B., Stables, S. J., & Willison, D. (2019). Measuring copper, Lead and zinc concentrations and oral bioaccessibility as part of the soils in scottish schools project. Minerals, 9(3), 173. (PMID: 10.3390/min9030173)
De Kimpe, C. R., & Morel, J.-L. (2000). Urban soil management: A growing concern. Soil Science, 165(1), 31–40. (PMID: 10.1097/00010694-200001000-00005)
De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66(3), 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065 . (PMID: 10.1016/j.chemosphere.2006.05.065)
Dong, B., Zhang, R., Gan, Y., Cai, L., Freidenreich, A., Wang, K., Guo, T., & Wang, H. (2019). Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of The Total Environment, 651, 3127–3138. https://doi.org/10.1016/j.scitotenv.2018.10.130 . (PMID: 10.1016/j.scitotenv.2018.10.130)
Ferraris, F. (1981). Hoja Los Ángeles-Angol, escala 1:250.000, región del Bío-Bío. Instituto de Investigaciones Geológicas. Nº 5.
Figueiredo, A. M. G., Tocchini, M., & dos Santos, T. F. S. (2011). Metals in playground soils of São paulo city, Brazil. Procedia Environmental Sciences, 4, 303–309. https://doi.org/10.1016/j.proenv.2011.03.035 . (PMID: 10.1016/j.proenv.2011.03.035)
Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653. https://doi.org/10.1016/j.ecolecon.2008.09.014 . (PMID: 10.1016/j.ecolecon.2008.09.014)
Foti, L., Dubs, F., Gignoux, J., Lata, J.-C., Lerch, T. Z., Mathieu, J., Nold, F., Nunan, N., Raynaud, X., Abbadie, L., & Barot, S. (2017). Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Science of The Total Environment, 598, 938–948. https://doi.org/10.1016/j.scitotenv.2017.04.111 . (PMID: 10.1016/j.scitotenv.2017.04.111)
Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environmental Pollution, 127(3), 343–352. https://doi.org/10.1016/j.envpol.2003.08.020 . (PMID: 10.1016/j.envpol.2003.08.020)
Glorennec, P., Lucas, J.-P., Mandin, C., & Le Bot, B. (2012). French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environment International, 45, 129–134. https://doi.org/10.1016/j.envint.2012.04.010 . (PMID: 10.1016/j.envint.2012.04.010)
González-Grijalva, B., Meza-Figueroa, D., Romero, F. M., Robles-Morúa, A., Meza-Montenegro, M., García-Rico, L., & Ochoa-Contreras, R. (2019). The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment. Science of The Total Environment, 657, 1468–1479. https://doi.org/10.1016/j.scitotenv.2018.12.148 . (PMID: 10.1016/j.scitotenv.2018.12.148)
Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Gomez-Nubla, L., Carrero, J. A., de Leão, F. B., Madariaga, J. M., & Silva, L. F. O. (2017). Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environmental Science and Pollution Research, 24(31), 24333–24345. https://doi.org/10.1007/s11356-017-9831-6 . (PMID: 10.1007/s11356-017-9831-6)
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 . (PMID: 10.1016/0043-1354(80)90143-8)
Horváth, A., Szűcs, P., & Bidló, A. (2015). Soil condition and pollution in urban soils: Evaluation of the soil quality in a Hungarian town. Journal of Soils and Sediments, 15(8), 1825–1835. https://doi.org/10.1007/s11368-014-0991-4 . (PMID: 10.1007/s11368-014-0991-4)
Jarva, J., Tarvainen, T., Reinikainen, J., & Eklund, M. (2010). TAPIR — Finnish national geochemical baseline database. Science of The Total Environment, 408(20), 4385–4395. https://doi.org/10.1016/j.scitotenv.2010.06.050 . (PMID: 10.1016/j.scitotenv.2010.06.050)
Jenks, W. F. (1956). Handbook of South American Geology, vol 65. Geological Society of America.
Kabata-Pendias, A. (2011). Trace elements in soils and plants. . CRC Press, Taylor & Francis Group, Boca Raton, FL.
Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z . (PMID: 10.1007/s10653-018-0106-z)
Kumpiene, J., Brännvall, E., Taraškevičius, R., Aksamitauskas, Č, & Zinkutė, R. (2011). Spatial variability of topsoil contamination with trace elements in preschools in Vilnius. Lithuania. Journal of Geochemical Exploration, 108(1), 15–20. https://doi.org/10.1016/j.gexplo.2010.08.003 . (PMID: 10.1016/j.gexplo.2010.08.003)
Levin, M. J., Kim, K-H. J., Morel, J. L., Burghardt, W., Charzynski, P., Shaw R. K, SUITMA IWG (2017) Soils within Cities. Catena,.
Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: A review. European Journal of Soil Science, 69(1), 196–215. https://doi.org/10.1111/ejss.12518 . (PMID: 10.1111/ejss.12518)
Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health, Part A, 42(9), 1241–1250. https://doi.org/10.1080/10934520701435684 . (PMID: 10.1080/10934520701435684)
Ljung, K., Selinus, O., & Otabbong, E. (2006). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of The Total Environment, 366(2), 749–759. https://doi.org/10.1016/j.scitotenv.2005.09.073 . (PMID: 10.1016/j.scitotenv.2005.09.073)
Monaci, F., & Bargagli, R., (1997). Barium and other trace metals as indicators of vehicle emissions. Water, Air, and Soil Pollution, 100(1), 89-98. https://doi.org/10.1023/A:1018318427017 . (PMID: 10.1023/A:1018318427017)
Meteorológica de Chile D (2016) Climatología. http://www.meteochile.gob.cl/climatologia.php . Accessed 09/24/2016.
Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2012). Multi-criteria ranking and source identification of metals in public playgrounds in Queensland, Australia. Geoderma, 173–174, 173–183. https://doi.org/10.1016/j.geoderma.2011.12.013 . (PMID: 10.1016/j.geoderma.2011.12.013)
Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.
Ng, S. L., Chan, L. S., Lam, K. C., & Chan, W. K. (2003). Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environmental Monitoring and Assessment, 89(3), 221–232. https://doi.org/10.1023/a:1026103318778 . (PMID: 10.1023/a:1026103318778)
Nielsen, S. N. (2005). The triassic santa juana formation at the lower Biobío River, south central Chile. Journal of South American Earth Sciences, 19(4), 547–562. https://doi.org/10.1016/j.jsames.2005.06.002 . (PMID: 10.1016/j.jsames.2005.06.002)
Parra, S., Bravo, M. A., Quiroz, W., Moreno, T., Karanasiou, A., Font, O., Vidal, V., & Cereceda, F. (2014). Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere, 111, 513–521. https://doi.org/10.1016/j.chemosphere.2014.03.127 . (PMID: 10.1016/j.chemosphere.2014.03.127)
Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society, London, Special Publications, 264(1), 1–10. https://doi.org/10.1144/gsl.sp.2006.264.01.01 . (PMID: 10.1144/gsl.sp.2006.264.01.01)
Presley, S. M., Abel, M. T., Austin, G. P., Rainwater, T. R., Brown, R. W., McDaniel, L. N., Marsland, E. J., Fornerette, A. M., Dillard, M. L., Rigdon, R. W., Kendall, R. J., & Cobb, G. P. (2010). Metal concentrations in schoolyard soils from new Orleans, Louisiana before and after Hurricanes Katrina and Rita. Chemosphere, 80(1), 67–73. https://doi.org/10.1016/j.chemosphere.2010.03.031 . (PMID: 10.1016/j.chemosphere.2010.03.031)
Pruvot, C., Douay, F., Hervé, F., & Waterlot, C. (2006). Heavy metals in soil, Crops and grass as a source of human exposure in the former mining areas (6 pp). Journal of Soils and Sediments, 6(4), 215–220. https://doi.org/10.1065/jss2006.10.186 . (PMID: 10.1065/jss2006.10.186)
Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., & Ladenberger, A. (2012). The concept of compositional data analysis in practice — Total major element concentrations in agricultural and grazing land soils of Europe. Science of The Total Environment, 426, 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032 . (PMID: 10.1016/j.scitotenv.2012.02.032)
Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of The Total Environment, 346(1–3), 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023 . (PMID: 10.1016/j.scitotenv.2004.11.023)
Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. . Chichester: Wiley. (PMID: 10.1002/9780470987605)
Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., Batista, M. J., Prazeres, C., Costa, C., Ferreira da Silva, E., & Rocha, F. (2014). Urban geochemistry of lead in gardens, playgrounds and schoolyards of Lisbon, Portugal: Assessing exposure and risk to human health. Applied Geochemistry, 44, 45–53. https://doi.org/10.1016/j.apgeochem.2013.09.022 . (PMID: 10.1016/j.apgeochem.2013.09.022)
Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2019). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00404-5 . (PMID: 10.1007/s10653-019-00404-5)
Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health, 42(8), 2573–2594. https://doi.org/10.1007/s10653-019-00404-5 . (PMID: 10.1007/s10653-019-00404-5)
Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88. https://doi.org/10.1016/j.envint.2019.02.011 . (PMID: 10.1016/j.envint.2019.02.011)
Rodríguez-Oroz, D., Vidal, R., Fernandoy, F., Lambert, F., & Quiero, F. (2018). Metal concentrations and source identification in Chilean public children’s playgrounds. Environmental Monitoring and Assessment, 190(12), 703. https://doi.org/10.1007/s10661-018-7056-x . (PMID: 10.1007/s10661-018-7056-x)
Salmani-Ghabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Cereceda-Balic, F., Fadic, X., Vidal, V., Funes, M., & Pinilla-Gil, E. (2016). Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile. Environmental Pollution, 218, 322–330. https://doi.org/10.1016/j.envpol.2016.07.007 . (PMID: 10.1016/j.envpol.2016.07.007)
Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., Vidal-Cortez, V., Cereceda-Balic, F., & Pinilla-Gil, E. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Science of The Total Environment, 527–528, 335–343. https://doi.org/10.1016/j.scitotenv.2015.05.010 . (PMID: 10.1016/j.scitotenv.2015.05.010)
Schalscha, E., & Ahumada, I. (1998). Heavy metals in rivers and soils of central Chile. Water Science and Technology, 37(8), 251–255. https://doi.org/10.1016/s0273-1223(98)00255-8 . (PMID: 10.1016/s0273-1223(98)00255-8)
Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Science of The Total Environment, 204(2), 135–146. https://doi.org/10.1016/S0048-9697(97)00156-3 . (PMID: 10.1016/S0048-9697(97)00156-3)
Tanić, M. N., Ćujić, M. R., Gajić, B. A., Daković, M. Z., & Dragović, S. D. (2018). Content of the potentially harmful elements in soil around the major coal-fired power plant in Serbia: Relation to soil characteristics, evaluation of spatial distribution and source apportionment. Environment and Earth Science, 77(1), 28. https://doi.org/10.1007/s12665-017-7214-4 . (PMID: 10.1007/s12665-017-7214-4)
Taraškevičius, R., Motiejūnaitė, J., Zinkutė, R., Eigminienė, A., Gedminienė, L., & Stankevičius, Ž. (2017). Similarities and differences in geochemical distribution patterns in epiphytic lichens and topsoils from kindergarten grounds in Vilnius. Journal of Geochemical Exploration, 183, 152–165. https://doi.org/10.1016/j.gexplo.2017.08.013 . (PMID: 10.1016/j.gexplo.2017.08.013)
Tume, P., Barrueto, K., Olguin, M., Torres, J., Cifuentes, J., Ferraro, F. X., Roca, N., Bech, J., & Cornejo, O. (2020). The influence of the industrial area on the pollution outside its borders: A case study from Quintero and Puchuncavi districts. Chile Environmental Geochemistry and Health, 42(8), 2557–2572. https://doi.org/10.1007/s10653-019-00423-2 . (PMID: 10.1007/s10653-019-00423-2)
Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018a). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano Chile. Journal of Soils and Sediments, 18(6), 2335–2349. https://doi.org/10.1007/s11368-017-1750-0 . (PMID: 10.1007/s11368-017-1750-0)
Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., & Medina, G. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA, 175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030 . (PMID: 10.1016/j.catena.2018.12.030)
Tume, P., King, R., González, E., Bustamante, G., Reverter, F., Roca, N., & Bech, J. (2014). Trace element concentrations in schoolyard soils from the port city of Talcahuano, Chile. Journal of Geochemical Exploration, 147, 229–236. (PMID: 10.1016/j.gexplo.2014.08.014)
Tume, P., Roca, N., Rubio, R., King, R., & Bech, J. (2018b). An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration, 184, 345–357. https://doi.org/10.1016/j.gexplo.2016.09.011 . (PMID: 10.1016/j.gexplo.2016.09.011)
Tumuklu, A., Ciflikli, M., & Ozgur, F. Z. (2008). Determination of heavy metals in soils around Afsin-Elbistan thermal power plant (Kahramanmaras, Turkey). Asian Journal of Chemistry, 20(8), 6376–6384.
Grant Information:
1130366 FONDECYT
Contributed Indexing:
Keywords: Coronel (Chile); Ecological indices; Potentially toxic elements; Urban soils
Substance Nomenclature:
0 (Metals, Heavy)
0 (Soil)
0 (Soil Pollutants)
2P299V784P (Lead)
Entry Date(s):
Date Created: 20210410 Date Completed: 20220426 Latest Revision: 20220426
Update Code:
20240105
DOI:
10.1007/s10653-021-00909-y
PMID:
33837506
Czasopismo naukowe
Urban areas are constantly growing. By 2050, the urban world population, it is predicted to reach 6 billion. Being component of cities environment, urban soils have elevated levels of potentially toxic elements from anthropogenic action. The aims of this study are (1) to establish background levels of potentially toxic element in soils in the city of Coronel and (2) to assess the pollution and identify its origin. Samples (129 in total) were collected in Coronel, from 43 sites in schoolyards. Three samples were taken at each site: 0-10 cm, 10-20 cm and 150 cm depth. Principal component analysis (PCA), cluster analysis (CA) and depth ratios were applied to distinguish the origin of the contamination. The geoaccumulation index, contamination factor and the integrated pollution index were used to estimate the pollution. The median concentration of the chemical elements in 0-10 cm depth was Ba 38 mg kg -1 ; Co 15 mg kg -1 ; Cr 18 mg kg -1 ; Cu 22 mg kg -1 ; Mn 536 mg kg -1 ; Ni 35.5 mg kg -1 ; Pb 6 mg kg -1 ; V 94 mg kg -1 ; Zn 65 mg kg -1 . Principal component analysis and CA suggested that Co, Ni and Mn were mainly derived from geogenic origin, while Ba, Cr, Cu, Pb, V and Zn from anthropic origin. Contamination factor indicated that some soil samples were classified as considerable contaminated to very highly contaminated by Ba, Pb, Zn and V.
(© 2021. The Author(s), under exclusive licence to Springer Nature B.V.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies