Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

CCCP-induced mitochondrial dysfunction - characterization and analysis of integrated stress response to cellular signaling and homeostasis.

Tytuł:
CCCP-induced mitochondrial dysfunction - characterization and analysis of integrated stress response to cellular signaling and homeostasis.
Autorzy:
Koncha RR; Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
Ramachandran G; Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
Sepuri NBV; Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
Ramaiah KVA; Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
Źródło:
The FEBS journal [FEBS J] 2021 Oct; Vol. 288 (19), pp. 5737-5754. Date of Electronic Publication: 2021 Apr 27.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
MeSH Terms:
Activating Transcription Factor 4/*genetics
Adaptor Proteins, Signal Transducing/*genetics
Cell Cycle Proteins/*genetics
Eukaryotic Initiation Factor-2/*genetics
Mitochondria/*genetics
Protein Kinases/*genetics
AMP-Activated Protein Kinase Kinases ; Acetamides/pharmacology ; Autophagy/genetics ; Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology ; Cyclohexylamines/pharmacology ; Gene Expression Regulation/drug effects ; Hep G2 Cells ; Humans ; Mitochondria/metabolism ; Mitochondria/pathology ; Oxidative Phosphorylation/drug effects ; Oxidative Stress/drug effects ; Phosphorylation/drug effects ; Stress, Physiological/drug effects ; Transcription Factor CHOP/genetics
References:
Proud CG (2019) Phosphorylation and signal transduction pathways in translational control. Cold Spring Harb Perspect Biol 11(7), a033050.
Wek RC (2018) Role of eIF2α kinases in translational control and adaptation to cellular stress. Cold Spring Harb Perspect Biol 10(7), a032870.
Costa-Mattioli M & Walter P (2020) The integrated stress response: from mechanism to disease. Science 368(6489), eaat5314.
Ron D & Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7), 519-529.
Ma XM & Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5), 307-318.
Saxton RA & Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6), 960-976.
Pyronnet S (2000) Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 60, 1237-1243.
Hardie DG, Ross FA & Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4), 251-262.
Liu R & Proud CG (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 37(3), 285-294.
Chen JJ & London IM (1995) Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci 20(3), 105-108.
Taniuchi S, Miyake M, Tsugawa K, Oyadomari M & Oyadomari S (2016) Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci Rep 6, 32886.
García MA, Meurs EF & Esteban M (2007) The dsRNA protein kinase PKR: virus and cell control. Biochimie 89(6-7), 799-811.
Aarti I, Rajesh K & Ramaiah KV (2010) Phosphorylation of eIF2 alpha in Sf9 cells: a stress, survival and suicidal signal. Apoptosis 15(6), 679-692.
Clemens MJ, Pain VM, Wong S-T & Henshaw EC (1982) Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2. Nature 296(5852), 93-95.
Matts RL, Levin DH & London IM (1983) Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc Natl Acad Sci USA 80, 2559-2563.
Ramaiah KV, Davies MV, Chen JJ & Kaufman RJ (1994) Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol 14(7), 4546-4553.
Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, Kaufman RJ & Ramaiah KV (2000) Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry 39(42), 12929-12938.
B'Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, Parry L, Stepien G, Fafournoux P & Bruhat A (2013) The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 41(16), 7683-7699.
Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP & Ron D (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24), 3066-3077.
Connor JH, Weiser DC, Li S, Hallenbeck JM & Shenolikar S (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 21(20), 6841-6850.
Babu SV & Ramaiah KV (1996) Type 1 phosphatase inhibitors reduce the restoration of guanine nucleotide exchange activity of eukaryotic initiation factor 2B inhibited reticulocyte lysates rescued by hemin. Arch Biochem Biophys 327, 201-208.
Han J, Back SH, Hur J, Lin Y-H, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M et al. (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5), 481-490.
Hussain SG & Ramaiah KV (2007) Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun 355, 365-370.
Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti M, Ben Mamou C, Marcinkiewicz E, Yoshida M et al. (2005) Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature 436(7054), 1166-1173.
ILL-Raga G, Köhler C, Radiske A, Lima RH, Rosen MD, Muñoz FJ & Cammarota M (2013) Consolidation of object recognition memory requires HRI kinase-dependent phosphorylation of eIF2α in the hippocampus. Hippocampus 23(6), 431-436.
Onat UI, Yildirim AD, Tufanli Ö, Çimen I, Kocatürk B, Veli Z, Hamid SM, Shimada K, Chen S, Sin J et al. (2019) Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am College Cardiol 73(10), 1149-1169.
Tavernarakis N (2008) Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18(5), 228-235.
Li JJ, Cao C, Fixsen SM, Young JM, Ono C, Bando H, Elde NC, Katsuma S, Dever TE & Sicheri F (2015) Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc Natl Acad Sci USA 112(32), E4364-E4373.
Rios-Fuller TJ, Mahe M, Walters B, Abbadi D, Pérez-Baos S, Gadi A, Andrews JJ, Katsara O, Vincent CT & Schneider RJ (2020) Translation regulation by eIF2α phosphorylation and mTORC1 signaling pathways in non-communicable diseases (NCDs). Int J Mol Sci 21(15), 5301.
Koromilas AE (2015) Roles of the translation initiation factor eIF2α serine 51 phosphorylation in cancer formation and treatment. Biochim Biophys Acta 1849(7), 871-880.
Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA & Wek RC (2004) Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279(35), 36553-36561.
Dennis MD, McGhee NK, Jefferson LS & Kimball SR (2013) Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1). Cell Signal 25(12), 2709-2716.
Nikonorova IA, Mirek ET, Signore CC, Goudie MP, Wek RC & Anthony TG (2018) Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. J Biol Chem 293(14), 5005-5015.
Ding B, Parmigiani A, Divakaruni AS, Archer K, Murphy AN & Budanov AV (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6, 22538.
Rajesh K, Krishnamoorthy J, Kazimierczak U, Tenkerian C, Papadakis AI, Wang S, Huang S & Koromilas AE (2015) Phosphorylation of the translation initiation factor eIF2α at serine 51 determines the cell fate decisions of Akt in response to oxidative stress. Cell Death Dis 6, e1591.
Dagon Y, Avraham Y & Berry EM (2006) AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun 340, 43-47.
Aparna G, Bhuyan AK, Sahdev S, Hasnain SE, Kaufman RJ & Ramaiah KV (2003) Stress-induced apoptosis in Spodoptera frugiperda (Sf9) cells: baculovirus p35 mitigates eIF2 alpha phosphorylation. Biochemistry 42(51), 15352-15360.
Thulasiraman V, Xu Z, Uma S, Gu Y, Chen JJ & Matts RL (1998) Evidence that Hsc70 negatively modulates the activation of the heme-regulated eIF-2alpha kinase in rabbit reticulocyte lysate. Eur J Biochem 255(3), 552-562.
Ramaiah KV, Dhindsa RS, Chen JJ, London IM & Levin D (1992) Recycling and phosphorylation of eukaryotic initiation factor 2 on 60S subunits of 80S initiation complexes and polysomes. Proc Natl Acad Sci USA 89(24), 12063-12067.
Krukowski K, Nolan A, Frias ES, Boone M, Ureta G, Grue K, Paladini MS, Elizarraras E, Delgado L, Bernales S et al. (2020) Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 9, e62048.
Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, Wiita AP, Xu K, Correia MA & Kampmann M (2020) Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature 579, 427-432.
Fessler E, Eckl EM, Schmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H & Jae LT (2020) A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579, 433-437.
Hussain SG & Ramaiah KVA (2007) Endoplasmic reticulum: stress, signalling and apoptosis. Curr Sci 93, 1684-1696.
Uppala JK, Gani AR & Ramaiah KVA (2017) Chemical chaperone, TUDCA unlike PBA, mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death. Sci Rep 7, 3831.
Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, Kaufman RJ, Ron D & Sonenberg N (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12, 1279-1286.
Anda S, Zach R & Grallert B (2017) Activation of Gcn2 in response to different stresses. PLoS One 12, e0182143.
Chen JJ (2007) Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 109(7), 2693-2699.
Uma S, Hartson SD, Chen JJ & Matts RL (1997) Hsp90 is obligatory for the heme-regulated eIF-2alpha kinase to acquire and maintain an activable conformation. J Biol Chem 272(17), 11648-11656.
Liberti MV & Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3), 211-218.
Koundouros N & Poulogiannis G (2018) Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front Oncol 8, 160.
Tallóczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL & Levine B (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99(1), 190-195.
Aramburu J, Ortells MC, Tejedor S, Buxadé M & López-Rodríguez C (2014) Transcriptional regulation of the stress response by mTOR. Sci Signal 7(332), re2.
Zhang YQ, Shen X, Xiao XL, Liu MY, Li SL, Yan J, Jin J, Gao JL, Zhen CL, Hu N et al. (2016) Mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone induces vasorelaxation without involving K(ATP) channel activation in smooth muscle cells of arteries. Br J Pharmacol 173(21), 3145-3158.
Samluk L, Urbanska M, Kisielewska K, Mohanraj K, Kim MJ, Machnicka K, Liszewska E, Jaworski J & Chacinska A (2019) Cytosolic translational responses differ under conditions of severe short-term and long-term mitochondrial stress. Mol Biol Cell 30(15), 1864-1877.
Mihaylova MM & Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9), 1016-1023.
Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel S-P, Andrzejewski S, Raissi TC, Pause A, St-Pierre J & Jones RG (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21(1), 1-9.
Zhang CS & Lin SC (2016) AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab 23(3), 399-401.
Kwon KY, Viollet B & Yoo OJ (2011) CCCP induces autophagy in an AMPK-independent manner. Biochem Biophys Res Commun 416, 343-348.
Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP & Auwerx J (2017) Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 216(7), 2027-2045.
Baker BM, Nargund AM, Sun T & Haynes CM (2012) Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet 8, e1002760.
Goswami P, Gupta S, Biswas J, Joshi N, Swarnkar S, Nath C & Singh S (2016) Endoplasmic reticulum stress plays a key role in rotenone-induced apoptotic death of neurons. Mol Neurobiol 53(1), 285-298.
Girardin SE, Cuziol C, Philpott DJ & Arnoult D (2020) The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 288(10), 3094-3107.
Uma S, Yun BG & Matts RL (2001) The heme-regulated eukaryotic initiation factor 2alpha kinase. A potential regulatory target for control of protein synthesis by diffusible gases. J Biol Chem 276(18), 14875-14883.
Yerlikaya A, Kimball SR & Stanley BA (2008) Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J 412(3), 579-588.
Alvarez-Castelao B, Tom Dieck S, Fusco CM, Donlin-Asp P, Perez JD & Schuman EM (2020) The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition. eLife 9, e52714.
Chen T, Ozel D, Qiao Y, Harbinski F, Chen L, Denoyelle S, He X, Zvereva N, Supko JG, Chorev M et al. (2011) Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target. Nat Chem Biol 7(9), 610-616.
Kline CL, Van den Heuvel AP, Allen JE, Prabhu VV, Dicker DT & El-Deiry WS (2016) ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal 9(415), ra18.
Shpilka T & Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19(2), 109-120.
Dholakia JN, Mueser TC, Woodley CL, Parkhurst LJ & Wahba AJ (1986) The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation. Proc Natl Acad Sci USA 83, 6746-6750.
Contributed Indexing:
Keywords: AKT; AMPK; ISRIB; UPR; eIF4E-BP1; mitochondrial dysfunction
Substance Nomenclature:
0 (2-(4-chlorophenoxy)-N-(4-(2-(4-chlorophenoxy)acetamido)cyclohexyl)acetamide)
0 (ATF4 protein, human)
0 (Acetamides)
0 (Adaptor Proteins, Signal Transducing)
0 (Cell Cycle Proteins)
0 (Cyclohexylamines)
0 (DDIT3 protein, human)
0 (EIF2S1 protein, human)
0 (EIF4EBP1 protein, human)
0 (Eukaryotic Initiation Factor-2)
145891-90-3 (Activating Transcription Factor 4)
147336-12-7 (Transcription Factor CHOP)
555-60-2 (Carbonyl Cyanide m-Chlorophenyl Hydrazone)
EC 2.7.- (Protein Kinases)
EC 2.7.11.3 (AMP-Activated Protein Kinase Kinases)
Entry Date(s):
Date Created: 20210410 Date Completed: 20211014 Latest Revision: 20211204
Update Code:
20240105
DOI:
10.1111/febs.15868
PMID:
33837631
Czasopismo naukowe
Mitochondrial dysfunction mediated by CCCP (carbonyl cyanide m-chlorophenyl hydrazone), an inhibitor of mitochondrial oxidative phosphorylation, evokes the integrated stress response (ISR), which is analyzed here by eIF2α phosphorylation and expression profiles of ATF4 and CHOP proteins. Our findings suggest that the CCCP-induced ISR pathway is mediated by activation of HRI kinase, but not by GCN2, PERK, or PKR. Also, CCCP activates AMPK, a cellular energy sensor, and AKT, a regulator implicated in cell survival, and suppresses phosphorylation of mTORC1 substrates eIF4E-BP1 and S6K. CCCP also downregulates translation and promotes autophagy, leading to noncaspase-mediated cell death in HepG2 cells. All these events are neutralized by NAC, an anti-ROS, suggesting that CCCP-induced mitochondrial dysfunction promotes oxidative stress. ISRIB, an inhibitor of the ISR pathway, mitigates CCCP-induced expression of ATF4 and CHOP, activation of AKT, and autophagy, similar to NAC. However, it fails to reverse CCCP-induced AMPK activation, suggesting that CCCP-induced autophagy is dependent on ISR and independent of AMPK activation. ISRIB restores partly, inhibition in eIF4E-BP1 phosphorylation, promotes eIF2α phosphorylation, albeit slowly, and mitigates suppression of translation accordingly, in CCCP-treated cells. These findings are consistent with the idea that CCCP-induced oxidative stress leading to eIF2α phosphorylation and ATF4 expression, which is known to stimulate genes involved in autophagy, play a pro-survival role together with AKT activation and regulate mTOR-mediated eIF4E-BP1 phosphorylation.
(© 2021 Federation of European Biochemical Societies.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies