Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Genetic interactions effects for cancer disease identification using computational models: a review.

Tytuł:
Genetic interactions effects for cancer disease identification using computational models: a review.
Autorzy:
Manavalan R; Department of Computer Science, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, 605602, India. manavalan_.
Priya S; Computer Science, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India.
Źródło:
Medical & biological engineering & computing [Med Biol Eng Comput] 2021 Apr; Vol. 59 (4), pp. 733-758. Date of Electronic Publication: 2021 Apr 11.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: New York, NY : Springer
Original Publication: Stevenage, Eng., Peregrinus.
MeSH Terms:
Epistasis, Genetic*
Neoplasms*/genetics
Computational Biology ; Genome-Wide Association Study ; Humans ; Models, Genetic ; Multifactor Dimensionality Reduction ; Polymorphism, Single Nucleotide
References:
National Cancer I (2007) What is cancer? In: Cancer.gov. www.cancer.gov/about-cancer/understanding/what-is-cancer.
Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418. https://doi.org/10.1016/j.apsb.2015.07.005. (PMID: 10.1016/j.apsb.2015.07.005265794714629446)
Barnes JL, Zubair M, John K, Poirier MC, Martin FL (2018) Carcinogens and DNA damage. Biochem Soc Trans 46:1213–1224. https://doi.org/10.1042/BST20180519. (PMID: 10.1042/BST20180519302875116195640)
WHO (2019) Cancer. www.who.int/health-topics/cancer#tab=tab_1.
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I BF (2018) Global cancer observatory: cancer today. In: Int. Agency Res. Cancer. https://gco.iarc.fr/today.
Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24. https://doi.org/10.1016/j.ajhg.2011.11.029. (PMID: 10.1016/j.ajhg.2011.11.02932573263257326)
Niel C, Sinoquet C, Dina C, Rocheleau G (2015) A survey about methods dedicated to epistasis detection. Front Genet 6:6. https://doi.org/10.3389/fgene.2015.00285. (PMID: 10.3389/fgene.2015.00285)
National Cancer I (2017) Genetics. In: Cancer.gov. https://www.cancer.gov/about-cancer/causes-prevention/genetics.
Moore JH, Williams SM (2002) New strategies for identifying gene-gene interactions in hypertension. Ann Med 34:88–95. https://doi.org/10.1080/07853890252953473. (PMID: 10.1080/0785389025295347312108579)
Talseth-Palmer BA, Scott RJ (2011) Genetic variation and its role in malignancy. Int J Biomed Sci 7:158–171. (PMID: 236752333614837)
Altshuler D, Gibbs R, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58. https://doi.org/10.1038/nature09298. (PMID: 10.1038/nature0929820811451)
García-González I, López-Díaz RI, Canché-Pech JR et al (2018) Epistasis analysis of metabolic genes polymorphisms associated with ischemic heart disease in Yucatan. Clín Investig Arterioscler (English Ed) 30:102–111. https://doi.org/10.1016/j.artere.2017.11.004. (PMID: 10.1016/j.artere.2017.11.004)
Genetics Home Reference (2018) What are single nucleotide polymorphisms (SNPs)? https://ghr.nlm.nih.gov/primer/genomicresearch/snp.
Wienbrandt L, Kassens J, Hübenthal M, Ellinghaus D (2017) fast genome-wide third-order SNP interaction tests with information gain on a low-cost heterogeneous parallel FPGA-GPU computing architecture. Procedia Comput Sci 108:596–605. https://doi.org/10.1016/j.procs.2017.05.210. (PMID: 10.1016/j.procs.2017.05.210)
Roy T, Bhattacharjee P (2020) Performance analysis of melanoma classifier using electrical modeling technique. Med Biol Eng Comput 58:2443–2454. https://doi.org/10.1007/s11517-020-02241-6. (PMID: 10.1007/s11517-020-02241-632770290)
Roy T, Bhattacharjee P (2020) A LabVIEW-based real-time modeling approach for detection of abnormalities in cancer cells. Gene Reports 20:100788. https://doi.org/10.1016/j.genrep.2020.100788. (PMID: 10.1016/j.genrep.2020.100788)
Roy T (2019) Analysis of cancer gene attributes using electrical sensor. Gene 685:62–69. https://doi.org/10.1016/j.gene.2018.10.073. (PMID: 10.1016/j.gene.2018.10.07330393193)
WHO Genetics in Prevention and Treatment of Cancer. https://www.who.int/genomics/about/Cancer.pdf.
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. https://doi.org/10.1086/321276. (PMID: 10.1086/321276114048191226028)
Moore J, Gilbert J, Tsai C-T et al (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261. https://doi.org/10.1016/j.jtbi.2005.11.036. (PMID: 10.1016/j.jtbi.2005.11.03616457852)
Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S, Gormally E, Malaveille C, Guarrera S, Polidoro S, Saletta F, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulos D, Kalandidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-de-Mesquita HB, Peeters PH, Lund E, Pera G, Martinez C, Amiano P, Barricarte A, Tormo MJ, Quiros JR, Berglund G, Janzon L, Jarvholm B, Day NE, Allen NE, Saracci R, Kaaks R, Ferrari P, Riboli E, Vineis P (2007) Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis 28:414–422. https://doi.org/10.1093/carcin/bgl159. (PMID: 10.1093/carcin/bgl15916956909)
Cao G, Lu H, Feng J, Shu J, Zheng D, Hou Y (2008) Lung cancer risk associated with thr495pro polymorphism of GHR in chines population. Jpn J Clin Oncol 38:308–316. https://doi.org/10.1093/jjco/hyn007. (PMID: 10.1093/jjco/hyn00718299312)
Milne RI, Fagerholm R, Nevanlinna H, BenÍtez J (2008) The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study. Carcinogenesis 29:1215–1218. https://doi.org/10.1093/carcin/bgn120. (PMID: 10.1093/carcin/bgn12018482998)
Pattin KA, White BC, Barney N, Gui J, Nelson HH, Kelsey KT, Andrew AS, Karagas MR, Moore JH (2009) A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 33:87–94. https://doi.org/10.1002/gepi.20360. (PMID: 10.1002/gepi.20360186712502700860)
Huo X, Lu C, Huang X, Hu Z, Jin G, Ma H, Wang X, Qin J, Wang X, Shen H, Tang J (2009) Polymorphisms in BRCA1, BRCA1-interacting genes and susceptibility of breast cancer in Chinese women. J Cancer Res Clin Oncol 135:1569–1575. https://doi.org/10.1007/s00432-009-0604-6. (PMID: 10.1007/s00432-009-0604-619484476)
Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH (2010) A simple and computationally efficient sampling approach to covariate adjustment for multifactor dimensionality reduction analysis of epistasis. Hum Hered 70:219–225. https://doi.org/10.1159/000319175. (PMID: 10.1159/000319175209241932982850)
Wu Y, Zhang L, Liu L et al (2011) A multifactor dimensionality reduction-logistic regression model of gene polymorphisms and an environmental interaction analysis in cancer research. Asian Pac J Cancer Prev 12:2887–2892. (PMID: 22393959)
Landa I, Boullosa C, Inglada-Pérez L, Sastre-Perona A, Pastor S, Velázquez A, Mancikova V, Ruiz-Llorente S, Schiavi F, Marcos R, Malats N, Opocher G, Diaz-Uriarte R, Santisteban P, Valencia A, Robledo M (2013) An epistatic Interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility. PLoS One 8:e74765. https://doi.org/10.1371/journal.pone.0074765. (PMID: 10.1371/journal.pone.0074765240863683781145)
Mostowska A, Sajdak S, Pawlik P, Lianeri M, Jagodzinski PP (2013) DNMT1, DNMT3A and DNMT3B gene variants in relation to ovarian cancer risk in the Polish population. Mol Biol Rep 40:4893–4899. https://doi.org/10.1007/s11033-013-2589-0. (PMID: 10.1007/s11033-013-2589-0236661043723978)
Luzón-Toro B, Bleda M, Navarro E, García-Alonso L, Ruiz-Ferrer M, Medina I, Martín-Sánchez M, Gonzalez CY, Fernández RM, Torroglosa A, Antiñolo G, Dopazo J, Borrego S (2015) Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas. BMC Med Genet 8:1–9. https://doi.org/10.1186/s12920-015-0160-7. (PMID: 10.1186/s12920-015-0160-7)
Marcus MW, Raji OY, Duffy SW et al (2016) Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model. Int J Oncol 49:361–370. https://doi.org/10.3892/ijo.2016.3499. (PMID: 10.3892/ijo.2016.3499271213824902078)
Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH (2011) A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 75:20–28. https://doi.org/10.1111/j.1469-1809.2010.00624.x. (PMID: 10.1111/j.1469-1809.2010.00624.x21091664)
Gui J, Moore JH, Kelsey KT, Marsit CJ, Karagas MR, Andrew AS (2011) A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. Hum Genet 129:101–110. https://doi.org/10.1007/s00439-010-0905-5. (PMID: 10.1007/s00439-010-0905-520981448)
Luyapan J, Ji X, Zhu D, et al (2019) An efficient survival multifactor dimensionality reduction method for detecting gene-gene interactions of lung cancer onset age. Proc - 2018 IEEE Int Conf Bioinforma Biomed BIBM 2018 2779–2781. https://doi.org/10.1109/BIBM.2018.8621534.
Fu OY, Chang HW, Da Lin Y et al (2016) Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER). Oncol Rep 36:1739–1747. https://doi.org/10.3892/or.2016.4956. (PMID: 10.3892/or.2016.495627461876)
Li CF, Luo FT, Zeng YX, Jia WH (2014) Weighted risk score-based multifactor dimensionality reduction to detect gene-gene interactions in nasopharyngeal carcinoma. Int J Mol Sci 15:10724–10737. https://doi.org/10.3390/ijms150610724. (PMID: 10.3390/ijms150610724249336374100176)
Cao X, Yu G, Ren W, Guo M, Wang J (2020) DualWMDR: detecting epistatic interaction with dual screening and multifactor dimensionality reduction. Hum Mutat 41:719–734. https://doi.org/10.1002/humu.23951. (PMID: 10.1002/humu.2395131705708)
Park M, Lee J, Park T, Lee S (2020) Gene-gene interaction analysis for the survival phenotype based on the Kaplan-Meier median estimate. Biomed Res Int 2020:1–10. https://doi.org/10.1155/2020/5282345. (PMID: 10.1155/2020/5282345)
Musani S, Shriner D, Liu N et al (2007) Detection of gene × gene interactions in genome-wide association studies of human population data. Hum Hered 63:67–84. https://doi.org/10.1159/000099179. (PMID: 10.1159/00009917917283436)
Fritsch A, Ickstadt K (2007) Comparing logic regression based methods for identifying SNP interactions. Lect Notes Comput Sci 4414 LNBI:90–103. https://doi.org/10.1007/978-3-540-71233-6_8. (PMID: 10.1007/978-3-540-71233-6_8)
Schwender H, Ickstadt K (2008) Identification of SNP interactions using logic regression. Biostatistics 9:187–198. https://doi.org/10.1093/biostatistics/kxm024. (PMID: 10.1093/biostatistics/kxm02417578898)
Wei Z, Li M, Rebbeck T, Li H (2008) U-statistics-based tests for multiple genes in genetic association studies. Ann Hum Genet 72:821–833. https://doi.org/10.1111/j.1469-1809.2008.00473.x. (PMID: 10.1111/j.1469-1809.2008.00473.x186911612574710)
Wang T, Ho G, Ye K, Strickler H, Elston RC (2009) A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped. Genet Epidemiol 33:6–15. https://doi.org/10.1002/gepi.20351. (PMID: 10.1002/gepi.20351186156212700837)
Lin C, Chu CM, Su SL (2016) Epistasis test in meta-analysis: a multi-parameter Markov chain Monte Carlo model for consistency of evidence. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0152891. (PMID: 10.1371/journal.pone.0152891)
Che K, Liu X, Guo M, et al (2017) Epistasis detection using a permutation-based gradient boosting machine. Proc - 2016 IEEE Int Conf Bioinforma Biomed BIBM 2016 1247–1252. https://doi.org/10.1109/BIBM.2016.7822697.
Stanislas V, Dalmasso C, Ambroise C (2017) Eigen-epistasis for detecting gene-gene interactions. BMC Bioinform 18:1–14. https://doi.org/10.1186/s12859-017-1488-0. (PMID: 10.1186/s12859-017-1488-0)
Matlak D, Szczurek E (2017) Epistasis in genomic and survival data of cancer patients. PLoS Comput Biol 13:1–16. https://doi.org/10.1371/journal.pcbi.1005626. (PMID: 10.1371/journal.pcbi.1005626)
Dorani (2018) A genetic algorithm for community. Appl Evol Comput:159–170. https://doi.org/10.1007/978-3-319-77538-8.
Muellner MK, Duernberger G, Ganglberger F, Kerzendorfer C, Uras IZ, Schoenegger A, Bagienski K, Colinge J, Nijman SMB (2014) TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens. BMC Bioinform 15. https://doi.org/10.1186/1471-2105-15-98.
Li J, Li H, Lv X et al (2018) Polymorphism in lncRNA AC016683.6 and its interaction with smoking exposure on the susceptibility of lung cancer. Cancer Cell Int 18:2. https://doi.org/10.1186/s12935-018-0591-2. (PMID: 10.1186/s12935-018-0591-2)
Ghorbian S, M. N, S. T et al (2018) Association of genetic variations in XRCC1 and ERCC1 genes with sporadic breast cancer. Gene, Cell Tissue 5:e80166. https://doi.org/10.5812/gct.80166. (PMID: 10.5812/gct.80166)
Xue W, Mengyun W, Li Z et al (2018) Genetic variants within MTORC1 genes predict gastric cancer prognosis in Chinese populations. J Cancer 9:1448–1454. https://doi.org/10.7150/jca.23566. (PMID: 10.7150/jca.23566297210555929090)
Gunathilake MN, Lee J, Cho YA et al (2018) Interaction between physical activity, PITX1 rs647161 genetic polymorphism and colorectal cancer risk in a Korean population: a case-control study. Oncotarget 9:7590–7603. https://doi.org/10.18632/oncotarget.24136. (PMID: 10.18632/oncotarget.24136294841355800927)
Hind J, Lisboa P, Hussain A, Al-Jumeily D (2019) A novel approach to detecting epistasis using random sampling regularisation. IEEE/ACM Trans Comput Biol Bioinforma PP:1. https://doi.org/10.1109/TCBB.2019.2948330.
Catalano C, da Silva Filho MI, Frank C et al (2020) Epistatic effect of TLR3 and cGAS-STING-IKKε-TBK1-IFN signaling variants on colorectal cancer risk. Cancer Med 9:1473–1484. https://doi.org/10.1002/cam4.2804. (PMID: 10.1002/cam4.280431869529)
Li H, Duan N, Zhang Q, Shao Y (2019) IL1A & IL1B genetic polymorphisms are risk factors for thyroid cancer in a Chinese Han population. Int Immunopharmacol 76:105869. https://doi.org/10.1016/j.intimp.2019.105869. (PMID: 10.1016/j.intimp.2019.10586931499272)
Li W, Jia M, Wang J, Lu J, Deng J, Tang J, Liu C (2019) Association of MMP9-1562C/T and MMP13-77A/G polymorphisms with non-small cell lung cancer in southern Chinese population. Biomolecules 9. https://doi.org/10.3390/biom9030107.
Sastre Tomas J, Cardenas J, Heine Suñer D, Capriotti E (2018) Detecting cancer-associated epistatic gene variants in lung adenocarcinoma.
Li Y, Xiao X, Bossé Y et al (2019) Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget 10:1760–1774. https://doi.org/10.18632/oncotarget.26678. (PMID: 10.18632/oncotarget.26678309567566442994)
Tang D, Liu H, Zhao Y, Qian D, Luo S, Patz EF Jr, Su L, Shen S, ChristianI D, Gao W, Wei Q (2020) Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival. Am J Cancer Res 10:2582–2595. (PMID: 329055237471354)
Wu Y, Yang S, Liu H, Luo S, Stinchcombe TE, Glass C, Su L, Shen S, Christiani DC, Wang Q, Wei Q (2020) Novel genetic variants of KIR3DL2 and PVR involved in immunoregulatory interactions are associated with non-small cell lung cancer survival. Am J Cancer Res 10:1770–1784. (PMID: 326422897339263)
Kudhair B, Alabid N, Zayed K et al (2020) The correlation of combined OGG1, CYP1A1 and GSTP1 gene variants and risk of lung cancer of male Iraqi waterpipe tobacco smokers. Mol Biol Rep 47. https://doi.org/10.1007/s11033-020-05589-y.
Haoyu Z, Zhao N, Ahearn T, et al (2018) A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics.
Kapoor PM, Lindström S, Behrens S, Wang X, Michailidou K, Bolla MK, Wang Q, Dennis J, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, García-Closas M, Easton DF, Milne RL, Chang-Claude J, on behalf of Breast Cancer Association Consortium (2020) Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int J Epidemiol 49:216–232. https://doi.org/10.1093/ije/dyz193. (PMID: 10.1093/ije/dyz19331605532)
Rahmani F, Hasanzadeh M, Hassanian S et al (2020) Association of a genetic variant in the angiopoietin-like protein 4 gene with cervical cancer. Pathol Res Pract 216:153011. https://doi.org/10.1016/j.prp.2020.153011. (PMID: 10.1016/j.prp.2020.15301132534714)
Fan Y, Gu X, Pan H, Dai Z, Zou C, Gao Z, Zhang H (2020) Association of genetic polymorphisms in TNFRSF11 with the Progression of Genetic Susceptibility to Gastric Cancer. J Oncol 2020:1–9. https://doi.org/10.1155/2020/4103264. (PMID: 10.1155/2020/4103264)
Andrew AS, Hu T, Gu J et al (2012) HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. PLoS One 7. https://doi.org/10.1371/journal.pone.0051301.
Hu T, Andrew AS, Karagas MR, Moore JH (2015) Functional dyadicity and heterophilicity of gene-gene interactions in statistical epistasis networks. BioData Min 8:1–11. https://doi.org/10.1186/s13040-015-0062-4. (PMID: 10.1186/s13040-015-0062-4)
Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH (2011) Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinform 12:364. https://doi.org/10.1186/1471-2105-12-364. (PMID: 10.1186/1471-2105-12-364)
Hu T, Pan Q, Andrew AS, Langer JM, Cole MD, Tomlinson CR, Karagas MR, Moore JH (2014) Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility. BioData Min 7:1–9. https://doi.org/10.1186/1756-0381-7-5. (PMID: 10.1186/1756-0381-7-5)
Larson NB, Jenkins GD, Larson MC et al (2014) Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer. Eur J Hum Genet 22:126–131. https://doi.org/10.1038/ejhg.2013.69. (PMID: 10.1038/ejhg.2013.6923591404)
Wakefield J, De Vocht F, Hung RJ (2010) Bayesian mixture modeling of gene-environment and gene-gene interactions. Genet Epidemiol 34:16–25. https://doi.org/10.1002/gepi.20429. (PMID: 10.1002/gepi.20429194923462796715)
Anunciação O, Vinga S, Oliveira AL (2013) Using Information Interaction to discover epistatic effects in complex diseases. PLoS One 8:e76300. https://doi.org/10.1371/journal.pone.0076300. (PMID: 10.1371/journal.pone.0076300241948333806769)
Fan R, Zhong M, Wang S, Zhang Y, Andrew A, Karagas M, Chen H, Amos CI, Xiong M, Moore JH (2011) Entropy-based information gain approaches to detect and to characterize gene-gene and gene-environment interactions/correlations of complex diseases. Genet Epidemiol 35:706–721. https://doi.org/10.1002/gepi.20621. (PMID: 10.1002/gepi.20621220097923384547)
Talluri R, Shete S (2015) Evaluating methods for modeling epistasis networks with application to head and neck cancer. Cancer Informat 14:17–23. https://doi.org/10.4137/CIN.S17289. (PMID: 10.4137/CIN.S17289)
Tian XW, Lim JS (2015) Interactive naive Bayesian network: a new approach of constructing gene-gene interaction network for cancer classification. Biomed Mater Eng 26:S1929–S1936. https://doi.org/10.3233/BME-151495. (PMID: 10.3233/BME-15149526405966)
Zeng Z, Jiang X, Neapolitan R (2016) Discovering causal interactions using Bayesian network scoring and information gain. BMC Bioinform 17:1–14. https://doi.org/10.1186/s12859-016-1084-8. (PMID: 10.1186/s12859-016-1084-8)
Assareh A, Volkert LG, Li J (2012) Interaction trees: optimizing ensembles of decision trees for gene-gene interaction detections. In: 2012 11th International Conference on Machine Learning and Applications. pp 616–621.
Cook NR, Zee RYL, Ridker PM (2004) Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med 23:1439–1453. https://doi.org/10.1002/sim.1749. (PMID: 10.1002/sim.174915116352)
Lin HY, Wang W, Liu YH, Soong SJ, York TP, Myers L, Hu JJ (2008) Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer. J Hum Genet 53:802–811. https://doi.org/10.1007/s10038-008-0313-z. (PMID: 10.1007/s10038-008-0313-z18607530)
Wolf BJ, Hill EG, Slate EH, Neumann CA, Kistner-Griffin E (2012) LBoost: a boosting algorithm with application for epistasis discovery. PLoS One 7:1–8. https://doi.org/10.1371/journal.pone.0047281. (PMID: 10.1371/journal.pone.0047281)
Wu X, Tang H, Guan A, Sun F, Wang H, Shu J (2016) Finding gastric cancer related genes and clinical biomarkers for detection based on gene-gene interaction network. Math Biosci 276:1–7. https://doi.org/10.1016/j.mbs.2015.12.001. (PMID: 10.1016/j.mbs.2015.12.00126700107)
Li J, Malley JD, Andrew AS, Karagas MR, Moore JH (2016) Detecting gene-gene interactions using a permutation-based random forest method. BioData Min 9:1–17. https://doi.org/10.1186/s13040-016-0093-5. (PMID: 10.1186/s13040-016-0093-5)
Dorani F, Hu T, Woods MO, Zhai G (2018) Ensemble learning for detecting gene-gene interactions in colorectal cancer. PeerJ 6:e5854. https://doi.org/10.7717/peerj.5854. (PMID: 10.7717/peerj.5854303975516211269)
Zhu R, Zhao H, Ma S (2014) Identifying gene-environment and gene-gene interactions using a progressive penalization approach. Genet Epidemiol 38:353–368. https://doi.org/10.1002/gepi.21807. (PMID: 10.1002/gepi.21807247233564356212)
Wu M, Huang J, Ma S (2018) Identifying gene-gene interactions using penalized tensor regression. Stat Med 37:598–610. https://doi.org/10.1002/sim.7523. (PMID: 10.1002/sim.752329034516)
Auton A, Abecasis G, Durbin RM et al (2015) A global reference for human genetic variation. Nature 526:68–74. (PMID: 10.1038/nature15393)
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22. https://doi.org/10.1016/j.ajhg.2017.06.005. (PMID: 10.1016/j.ajhg.2017.06.00555018725501872)
Dasgupta A, Sun Y, König I et al (2011) Brief review of regression-based and machine learning methods in genetic epidemiology: the genetic analysis workshop 17 experience. Genet Epidemiol 35(Suppl 1):S5–S11. https://doi.org/10.1002/gepi.20642. (PMID: 10.1002/gepi.20642221280593345521)
Xu C, Jackson S (2019) Machine learning and complex biological data. Genome Biol 20:76. https://doi.org/10.1186/s13059-019-1689-0. (PMID: 10.1186/s13059-019-1689-0309920736469083)
Okser S, Pahikkala T, Airola A, Salakoski T, Ripatti S, Aittokallio T (2014) Regularized machine learning in the genetic prediction of complex traits. PLoS Genet 10:e1004754. (PMID: 10.1371/journal.pgen.1004754)
Abraham G, Inouye M (2015) Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev 33:10–16. https://doi.org/10.1016/j.gde.2015.06.005. (PMID: 10.1016/j.gde.2015.06.00526210231)
Chen XW, Kim S, Wu C, Xu D (2009) 2009 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009: Preface. 2009 IEEE Int Conf Bioinforma Biomed BIBM 2009. https://doi.org/10.1109/BIBM.2009.4.
Bhattacharjee S, Wang Z, Ciampa J, Kraft P, Chanock S, Yu K, Chatterjee N (2010) Using principal components of genetic variation for robust and powerful detection of gene-gene interactions in case-control and case-only studies. Am J Hum Genet 86:331–342. https://doi.org/10.1016/j.ajhg.2010.01.026. (PMID: 10.1016/j.ajhg.2010.01.026202063332833365)
Seal DB, Saha S, Chatterjee M, et al (2016) Gene - gene interaction: a clustering, correlation & entropy based approach. 2016 IEEE 7th Annu Ubiquitous Comput Electron Mob Commun Conf UEMCON 2016. https://doi.org/10.1109/UEMCON.2016.7777833.
Bornelöv S, Marillet S, Komorowski J (2014) Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers. BMC Bioinform 15:1–12. https://doi.org/10.1186/1471-2105-15-139. (PMID: 10.1186/1471-2105-15-139)
Uppu S, Krishna A, Gopalan RP (2016) A deep learning approach to detect SNP interactions. J Softw 11:965–975. https://doi.org/10.17706/jsw.11.10.965-975. (PMID: 10.17706/jsw.11.10.965-975)
Cao X, Yu G, Liu J, Jia L, Wang J (2018) ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information. Int J Mol Sci 19:19. https://doi.org/10.3390/ijms19082267. (PMID: 10.3390/ijms19082267)
Kim D, Li R, Dudek SM, Frase AT, Pendergrass SA, Ritchie MD (2014) Knowledge-driven genomic interactions: an application in ovarian cancer. BioData Min 7:1–11. https://doi.org/10.1186/1756-0381-7-20. (PMID: 10.1186/1756-0381-7-20)
Zhang L, Liu H, Huang Y, Wang X, Chen Y, Meng J (2017) Cancer progression prediction using gene interaction regularized elastic net. IEEE/ACM Trans Comput Biol Bioinforma 14:145–154. https://doi.org/10.1109/TCBB.2015.2511758. (PMID: 10.1109/TCBB.2015.2511758)
Yung L, Yang C, Wan X, Yu W (2011) GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies. Bioinformatics 27:1309–1310. https://doi.org/10.1093/bioinformatics/btr114. (PMID: 10.1093/bioinformatics/btr114213720873105448)
Yang CH, Yang HS, Chuang LY (2019) PBMDR: a particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions. J Theor Biol 461:68–75. https://doi.org/10.1016/j.jtbi.2018.10.012. (PMID: 10.1016/j.jtbi.2018.10.01230296447)
Yang CH, Chuang LY, Chen YJ, Tseng HF, Chang HW (2011) Computational analysis of simulated SNP interactions between 26 growth factor-related genes in a breast cancer association study. Omi A J Integr Biol 15:399–407. https://doi.org/10.1089/omi.2010.0028. (PMID: 10.1089/omi.2010.0028)
Nunkesser R, Bernholt T, Schwender H, Ickstadt K, Wegener I (2007) Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics 23:3280–3288. https://doi.org/10.1093/bioinformatics/btm522. (PMID: 10.1093/bioinformatics/btm52218006552)
Ou-Yang F, Da Lin Y, Chuang LY et al (2015) The combinational polymorphisms of ORAI1 gene are associated with preventive models of breast cancer in the Taiwanese. Biomed Res Int 2015. https://doi.org/10.1155/2015/281263.
Wang X, Peng Q, Fan Y (2016) Detecting susceptibility to breast cancer with SNP-SNP interaction using BPSOHS and emotional neural networks. Biomed Res Int 2016:1–7. https://doi.org/10.1155/2016/5164347. (PMID: 10.1155/2016/5164347)
Liu J, Yu G, Jiang Y, Wang J (2017) HiSeeker: detecting high-order SNP interactions based on pairwise SNP combinations. Genes (Basel) 8:2–19. https://doi.org/10.3390/genes8060153. (PMID: 10.3390/genes8060153)
Li X, Zhang S, Wong KC (2018) Nature-inspired multiobjective epistasis elucidation from genome-wide association studies. IEEE/ACM Trans Comput Biol Bioinforma 1–12. https://doi.org/10.1109/TCBB.2018.2849759.
Baryshnikova A, Costanzo M, Myers CL, Andrews B, Boone C (2013) Genetic interaction networks: toward an understanding of heritability. Annu Rev Genomics Hum Genet 14:111–133. https://doi.org/10.1146/annurev-genom-082509-141730. (PMID: 10.1146/annurev-genom-082509-14173023808365)
Mair B, Moffat J, Boone C, Andrews BJ (2019) Genetic interaction networks in cancer cells. Curr Opin Genet Dev 54:64–72. https://doi.org/10.1016/j.gde.2019.03.002. (PMID: 10.1016/j.gde.2019.03.002309743176820710)
Montojo J, Zuberi K, Rodriguez H et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153. https://doi.org/10.12688/f1000research.4572.1. (PMID: 10.12688/f1000research.4572.1252541044168749)
Contributed Indexing:
Keywords: Cancer; Computational model; Epistasis; Gene; Genetic interactions; SNPs
Entry Date(s):
Date Created: 20210411 Date Completed: 20210929 Latest Revision: 20210929
Update Code:
20240105
DOI:
10.1007/s11517-021-02343-9
PMID:
33839998
Czasopismo naukowe
Genome-wide association studies (GWAS) provide clear insight into understanding genetic variations and environmental influences responsible for various human diseases. Cancer identification through genetic interactions (epistasis) is one of the significant ongoing researches in GWAS. The growth of the cancer cell emerges from multi-locus as well as complex genetic interaction. It is impractical for the physician to detect cancer via manual examination of SNPs interaction. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all relevant genetic studies published between 2001 and 2020. In this contemporary review, various computational methods are as follows: multifactor dimensionality reduction-based approaches, statistical strategies, machine learning, and optimization-based techniques are carefully reviewed and presented with their evaluation results. Moreover, these computational approaches' strengths and limitations are described. The issues behind the computational methods for identifying the cancer disease through genetic interactions and the various evaluation parameters used by researchers have been analyzed. This review is highly beneficial for researchers and medical professionals to learn techniques adapted to discover the epistasis and aids to design novel automatic epistasis detection systems with strong robustness and maximum efficiency to address the different research problems in finding practical solutions effectively.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies