Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structural insights into photosystem II assembly.

Tytuł:
Structural insights into photosystem II assembly.
Autorzy:
Zabret J; Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
Bohn S; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Schuller SK; Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.; CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany.
Arnolds O; Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
Möller M; Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
Meier-Credo J; Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany.
Liauw P; Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
Chan A; NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Tajkhorshid E; NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Langer JD; Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany.; Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany.
Stoll R; Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
Krieger-Liszkay A; Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France.
Engel BD; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.; Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.; Department of Chemistry, Technical University of Munich, Garching, Germany.
Rudack T; Biospectroscopy, Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany. .; Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany. .
Schuller JM; Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany. .; CryoEM of Molecular Machines, SYNMIKRO Research Center and Department of Chemistry, Philipps University of Marburg, Marburg, Germany. .
Nowaczyk MM; Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany. .
Źródło:
Nature plants [Nat Plants] 2021 Apr; Vol. 7 (4), pp. 524-538. Date of Electronic Publication: 2021 Apr 12.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: [London, UK] : Nature Publishing Group, a division of Macmillan Publishers Limited, [2015]-
MeSH Terms:
Bacterial Proteins/*genetics
Photosystem II Protein Complex/*genetics
Bacterial Proteins/ultrastructure ; Photosynthesis ; Photosystem II Protein Complex/ultrastructure ; Thermosynechococcus/genetics ; Thermosynechococcus/ultrastructure
References:
Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011). (PMID: 2143868110.1146/annurev-arplant-042110-103811)
Sanchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol. 225, 1440–1446 (2020). (PMID: 3159898110.1111/nph.16249)
Vinyard, D. J., Ananyev, G. M. & Dismukes, G. C. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82, 577–606 (2013). (PMID: 2352769410.1146/annurev-biochem-070511-100425)
Boekema, E. J. et al. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc. Natl Acad. Sci. USA 92, 175–179 (1995). (PMID: 781681110.1073/pnas.92.1.17542840)
Cox, N., Pantazis, D. A. & Lubitz, W. Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL data. Annu. Rev. Biochem. 89, 795–820 (2020). (PMID: 3220876510.1146/annurev-biochem-011520-104801)
Shen, J. R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23–48 (2015). (PMID: 2574644810.1146/annurev-arplant-050312-120129)
Yano, J. et al. Light-dependent production of dioxygen in photosynthesis. Met. Ions Life Sci. 15, 13–43 (2015). (PMID: 25707465468804210.1007/978-3-319-12415-5_2)
Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004). (PMID: 1476488510.1126/science.1093087)
Cardona, T., Sedoud, A., Cox, N. & Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 1817, 26–43 (2012). (PMID: 2183515810.1016/j.bbabio.2011.07.012)
Holzwarth, A. R. et al. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895–6900 (2006). (PMID: 1664110910.1073/pnas.05053711031458990)
Müh, F., Glöckner, C., Hellmich, J. & Zouni, A. Light-induced quinone reduction in photosystem II. Biochim. Biophys. Acta 1817, 44–65 (2012). (PMID: 2167968410.1016/j.bbabio.2011.05.021)
Faller, P. et al. Rapid formation of the stable tyrosyl radical in photosystem II. Proc. Natl Acad. Sci. USA 98, 14368–14373 (2001). (PMID: 1176243110.1073/pnas.25138259864688)
Roose, J. L., Frankel, L. K., Mummadisetti, M. P. & Bricker, T. M. The extrinsic proteins of photosystem II: update. Planta 243, 889–908 (2016). (PMID: 2675935010.1007/s00425-015-2462-6)
Müh, F. & Zouni, A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci. 29, 1090–1119 (2020). (PMID: 32067287718478410.1002/pro.3841)
Shi, L. X., Hall, M., Funk, C. & Schröder, W. P. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta 1817, 13–25 (2012). (PMID: 2190718110.1016/j.bbabio.2011.08.008)
Stewart, D. H. & Brudvig, G. W. Cytochrome b 559 of photosystem II. Biochim. Biophys. Acta 1367, 63–87 (1998). (PMID: 978460710.1016/S0005-2728(98)00139-X)
Cox, N. et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science 345, 804–808 (2014). (PMID: 2512443710.1126/science.1254910)
Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018). (PMID: 30405241648524210.1038/s41586-018-0681-2)
Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014). (PMID: 25043005482154410.1038/nature13453)
Suga, M. et al. An oxyl/oxo mechanism for oxygen–oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334–338 (2019). (PMID: 3162420710.1126/science.aax6998)
Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011). (PMID: 2149926010.1038/nature09913)
Krieger-Liszkay, A., Fufezan, C. & Trebst, A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551–564 (2008). (PMID: 1878015910.1007/s11120-008-9349-3)
Vass, I. Molecular mechanisms of photodamage in the photosystem II complex. Biochim. Biophys. Acta 1817, 209–217 (2012). (PMID: 2156516310.1016/j.bbabio.2011.04.014)
Shevela, D. et al. ‘Birth defects’ of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. Physiol. Plant. 166, 165–180 (2019). (PMID: 3069352910.1111/ppl.12932)
Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 274–287 (2016). (PMID: 2659214410.1016/j.bbabio.2015.11.007)
Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635 (2013). (PMID: 2345178310.1146/annurev-arplant-050312-120124)
Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010). (PMID: 20338950288979110.1093/aob/mcq059)
Komenda, J. et al. Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem II in Synechocystis PCC 6803. Biochim. Biophys. Acta 1767, 829–837 (2007). (PMID: 1730074210.1016/j.bbabio.2007.01.005)
Komenda, J. et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystis sp. PCC 6803. J. Biol. Chem. 283, 22390–22399 (2008). (PMID: 1855053810.1074/jbc.M801917200)
Boehm, M. et al. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II. Philos. Trans. R. Soc. Lond. B 367, 3444–3454 (2012). (PMID: 10.1098/rstb.2012.0066)
Dobáková, M., Sobotka, R., Tichy, M. & Komenda, J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076–1086 (2009). (PMID: 19036835263385510.1104/pp.108.130039)
Komenda, J. et al. The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 158, 476–486 (2012). (PMID: 2208642310.1104/pp.111.184184)
Mamedov, F., Nowaczyk, M. M., Thapper, A., Rögner, M. & Styring, S. Functional characterization of monomeric photosystem II core preparations from Thermosynechococcus elongatus with or without the Psb27 protein. Biochemistry 46, 5542–5551 (2007). (PMID: 1743283310.1021/bi7000399)
Nowaczyk, M. M. et al. Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18, 3121–3131 (2006). (PMID: 17114356169394710.1105/tpc.106.042671)
Roose, J. L. & Pakrasi, H. B. The Psb27 protein facilitates manganese cluster assembly in photosystem II. J. Biol. Chem. 283, 4044–4050 (2008). (PMID: 1808957210.1074/jbc.M708960200)
Bao, H. & Burnap, R. L. Photoactivation: the light-driven assembly of the water oxidation complex of photosystem II. Front. Plant Sci. 7, 578–591 (2016). (PMID: 27200051485368410.3389/fpls.2016.00578)
Becker, K., Cormann, K. U. & Nowaczyk, M. M. Assembly of the water-oxidizing complex in photosystem II. J. Photochem. Photobiol. B 104, 204–211 (2011). (PMID: 2138272810.1016/j.jphotobiol.2011.02.005)
Cheniae, G. & Martin, I. Photoactivation of the manganese catalyst of O 2 evolution. I-Biochemical and kinetic aspects. Biochim. Biophys. Acta 253, 167–181 (1971). (PMID: 500167610.1016/0005-2728(71)90242-8)
Dasgupta, J., Ananyev, G. M. & Dismukes, G. C. Photoassembly of the water-oxidizing complex in photosystem II. Coord. Chem. Rev. 252, 347–360 (2008). (PMID: 19190725259782310.1016/j.ccr.2007.08.022)
Radmer, R. & Cheniae, G. M. Photoactivation of the manganese catalyst of O 2 evolution. II. A two-quantum mechanism. Biochim. Biophys. Acta 253, 182–186 (1971). (PMID: 500167710.1016/0005-2728(71)90243-X)
Nixon, P. J. & Diner, B. A. Aspartate 170 of the photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry 31, 942–948 (1992). (PMID: 173195110.1021/bi00118a041)
Regel, R. E. et al. Deregulation of electron flow within photosystem II in the absence of the PsbJ protein. J. Biol. Chem. 276, 41473–41478 (2001). (PMID: 1154675810.1074/jbc.M102007200)
Nowaczyk, M. M. et al. Deletion of psbJ leads to accumulation of Psb27-Psb28 photosystem II complexes in Thermosynechococcus elongatus. Biochim. Biophys. Acta 1817, 1339–1345 (2012). (PMID: 2238739510.1016/j.bbabio.2012.02.017)
Sakata, S., Mizusawa, N., Kubota-Kawai, H., Sakurai, I. & Wada, H. Psb28 is involved in recovery of photosystem II at high temperature in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1827, 50–59 (2013). (PMID: 2308496810.1016/j.bbabio.2012.10.004)
Weisz, D. A. et al. Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome b559 in Photosystem II. Proc. Natl Acad. Sci. USA 114, 2224–2229 (2017). (PMID: 2819385710.1073/pnas.16203601145338524)
Bečková, M. et al. Association of Psb28 and Psb27 proteins with PSII–PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol. Plant 10, 62–72 (2017). (PMID: 2753036610.1016/j.molp.2016.08.001)
Bentley, F. K., Luo, H., Dilbeck, P., Burnap, R. L. & Eaton-Rye, J. J. Effects of inactivating psbM and psbT on photodamage and assembly of photosystem II in Synechocystis sp. PCC 6803. Biochemistry 47, 11637–11646 (2008). (PMID: 1883414610.1021/bi800804h)
Grasse, N. et al. Role of novel dimeric photosystem II (PSII)–Psb27 protein complex in PSII repair. J. Biol. Chem. 286, 29548–29555 (2011). (PMID: 21737447319099510.1074/jbc.M111.238394)
Liu, H., Roose, J. L., Cameron, J. C. & Pakrasi, H. B. A genetically tagged Psb27 protein allows purification of two consecutive photosystem II (PSII) assembly intermediates in Synechocystis 6803, a cyanobacterium. J. Biol. Chem. 286, 24865–24871 (2011). (PMID: 21592967313706110.1074/jbc.M111.246231)
Weisz, D. A. et al. A novel chlorophyll protein complex in the repair cycle of photosystem II. Proc. Natl Acad. Sci. USA 116, 21907–21913 (2019). (PMID: 3159484710.1073/pnas.19096441166815111)
Mabbitt, P. D., Wilbanks, S. M. & Eaton-Rye, J. J. Structure and function of the hydrophilic photosystem II assembly proteins: Psb27, Psb28 and Ycf48. Plant Physiol. Biochem. 81, 96–107 (2014). (PMID: 2465687810.1016/j.plaphy.2014.02.013)
Broser, M. et al. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution. J. Biol. Chem. 285, 26255–26262 (2010). (PMID: 20558739292404010.1074/jbc.M110.127589)
Komenda, J. & Sobotka, R. Cyanobacterial high-light-inducible proteins—protectors of chlorophyll-protein synthesis and assembly. Biochim. Biophys. Acta 1857, 288–295 (2016). (PMID: 2634101710.1016/j.bbabio.2015.08.011)
Mulo, P. et al. Mutagenesis of the D-E loop of photosystem II reaction centre protein D1. Function and assembly of photosystem II. Plant Mol. Biol. 33, 1059–1071 (1997). (PMID: 915498710.1023/A:1005765305956)
Eaton-Rye, J. J. & Govindjee. Electron transfer through the quinone acceptor complex of photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. Biochim. Biophys. Acta 935, 237–247 (1988). (PMID: 10.1016/0005-2728(88)90220-4)
Allen, J. F. & Nield, J. Redox tuning in photosystem II. Trends Plant Sci. 22, 97–99 (2017). (PMID: 2797971510.1016/j.tplants.2016.11.011)
Brinkert, K., De Causmaecker, S., Krieger-Liszkay, A., Fantuzzi, A. & Rutherford, A. W. Bicarbonate-induced redox tuning in photosystem II for regulation and protection. Proc. Natl Acad. Sci. USA 113, 12144–12149 (2016). (PMID: 2779100110.1073/pnas.16088621135087022)
Cormann, K. U., Möller, M. & Nowaczyk, M. M. Critical assessment of protein cross-linking and molecular docking: an updated model for the interaction between photosystem II and Psb27. Front. Plant Sci. 7, 157 (2016). (PMID: 26925076475802510.3389/fpls.2016.00157)
Liu, H., Huang, R. Y., Chen, J., Gross, M. L. & Pakrasi, H. B. Psb27, a transiently associated protein, binds to the chlorophyll binding protein CP43 in photosystem II assembly intermediates. Proc. Natl Acad. Sci. USA 108, 18536–18541 (2011). (PMID: 2203169510.1073/pnas.11115971083215006)
Wei, L. et al. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J. Biol. Chem. 285, 21391–21398 (2010). (PMID: 20444695289840010.1074/jbc.M110.105064)
Wei, X. et al. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016). (PMID: 2725127610.1038/nature18020)
Avramov, A. P., Hwang, H. J. & Burnap, R. L. The role of Ca involvement in the assembly of the Mn 4 Ca cluster in the photosynthetic water-oxidizing complex. Biochemistry 45, 12876–12889 (2006). (PMID: 1704250610.1021/bi061495t)
Campbell, K. A. et al. Dual-mode EPR detects the initial intermediate in photoassembly of the photosystem II Mn cluster: the influence of amino acid residue 170 of the D1 polypeptide on Mn coordination. J. Am. Chem. Soc. 122, 3754–3761 (2000). (PMID: 10.1021/ja000142t)
Cohen, R. O., Nixon, P. J. & Diner, B. A. Participation of the C-terminal region of the D1-polypeptide in the first steps in the assembly of the Mn 4 Ca cluster of photosystem II. J. Biol. Chem. 282, 7209–7218 (2007). (PMID: 1720208810.1074/jbc.M606255200)
Kuhl, H. et al. Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J. Biol. Chem. 275, 20652–20659 (2000). (PMID: 1074801710.1074/jbc.M001321200)
Iwai, M., Katoh, H., Katayama, M. & Ikeuchi, M. Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 45, 171–175 (2004). (PMID: 1498848710.1093/pcp/pch015)
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). (PMID: 1618256310.1016/j.jsb.2005.07.007)
Biyani, N. et al. Focus: the interface between data collection and data processing in cryo-EM. J. Struct. Biol. 198, 124–133 (2017). (PMID: 2834403610.1016/j.jsb.2017.03.007)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). (PMID: 26592709471134310.1016/j.jsb.2015.11.003)
Scheres, S. H. A Bayesian view on cryo-electron microscopy structure determination. J. Mol. Biol. 415, 406–418 (2012). (PMID: 22100448331496410.1016/j.jmb.2011.11.010)
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017). (PMID: 28671674553364910.1038/nmeth.4347)
Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 10.1002/jcc.2008415264254)
Bialek, W. et al. Crystal structure of the Psb28 accessory factor of Thermosynechococcus elongatus photosystem II at 2.3 Å. Photosynth. Res. 117, 375–383 (2013). (PMID: 2412679210.1007/s11120-013-9939-6)
Michoux, F. et al. Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth. Res. 122, 57–67 (2014). (PMID: 24838684418003010.1007/s11120-014-0010-z)
Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003). (PMID: 1282433216892710.1093/nar/gkg520)
Wu, S. & Zhang, Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35, 3375–3382 (2007). (PMID: 17478507190428010.1093/nar/gkm251)
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018). (PMID: 2925881710.1016/j.jmb.2017.12.007)
Dobson, L., Remenyi, I. & Tusnady, G. E. CCTOP: a consensus constrained TOPology prediction web server. Nucleic Acids Res. 43, W408–W412 (2015). (PMID: 25943549448926210.1093/nar/gkv451)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Crystallogr D 66, 486–501 (2010). (PMID: 2038300210.1107/S09074449100074932852313)
Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49, 174–180 (2009). (PMID: 19398010275368510.1016/j.ymeth.2009.04.005)
Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996). (PMID: 10.1016/0263-7855(96)00018-5)
Ribeiro, J. V. et al. QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016). (PMID: 27216779487758310.1038/srep26536)
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). (PMID: 16222654248633910.1002/jcc.20289)
Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011). (PMID: 21187238408381610.1016/B978-0-12-381270-4.00019-6)
Lindert, S. & McCammon, J. A. Improved cryoEM-guided iterative molecular dynamics—rosetta protein structure refinement protocol for high precision protein structure prediction. J. Chem. Theory Comput. 11, 1337–1346 (2015). (PMID: 25883538439332410.1021/ct500995d)
Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705 (2018). (PMID: 29398115603538910.1016/j.cell.2017.12.030)
Wehmer, M. et al. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc. Natl Acad. Sci. USA 114, 1305–1310 (2017). (PMID: 2811568910.1073/pnas.16211291145307450)
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). (PMID: 10.1107/S2059798319011471)
Grant Information:
P41 GM104601 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Bacterial Proteins)
0 (Photosystem II Protein Complex)
SCR Organism:
Thermosynechococcus elongatus
Entry Date(s):
Date Created: 20210413 Date Completed: 20210615 Latest Revision: 20230130
Update Code:
20240104
PubMed Central ID:
PMC8094115
DOI:
10.1038/s41477-021-00895-0
PMID:
33846594
Czasopismo naukowe
Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (Q B ) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn 4 CaO 5 cluster, which performs the unique water-splitting reaction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies