Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity.

Tytuł:
Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity.
Autorzy:
von Fallois M; Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Kosyna FK; Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Mandl M; Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Landesman Y; Karyopharm Therapeutics, 85 Wells Ave, Newton, MA, 02459, USA.
Dunst J; Universitätsklinikum Schleswig-Holstein, Campus Kiel-Klinik für Strahlentherapie, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
Depping R; Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany. .
Źródło:
Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2021 Jul; Vol. 147 (7), pp. 2025-2033. Date of Electronic Publication: 2021 Apr 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin ; New York : Springer-Verlag.
MeSH Terms:
Carcinoma, Hepatocellular/*radiotherapy
Hydrazines/*pharmacology
Hypoxia-Inducible Factor 1, alpha Subunit/*antagonists & inhibitors
Karyopherins/*antagonists & inhibitors
Osteosarcoma/*radiotherapy
Radiation Tolerance/*drug effects
Radiation-Sensitizing Agents/*pharmacology
Receptors, Cytoplasmic and Nuclear/*antagonists & inhibitors
Triazoles/*pharmacology
Apoptosis ; Bone Neoplasms/drug therapy ; Bone Neoplasms/metabolism ; Bone Neoplasms/pathology ; Bone Neoplasms/radiotherapy ; Carcinoma, Hepatocellular/drug therapy ; Carcinoma, Hepatocellular/metabolism ; Carcinoma, Hepatocellular/pathology ; Cell Proliferation ; Gene Expression Regulation, Neoplastic ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit/genetics ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Karyopherins/genetics ; Karyopherins/metabolism ; Liver Neoplasms/drug therapy ; Liver Neoplasms/metabolism ; Liver Neoplasms/pathology ; Liver Neoplasms/radiotherapy ; Osteosarcoma/drug therapy ; Osteosarcoma/metabolism ; Osteosarcoma/pathology ; Receptors, Cytoplasmic and Nuclear/genetics ; Receptors, Cytoplasmic and Nuclear/metabolism ; Tumor Cells, Cultured ; Exportin 1 Protein
References:
Kauffman M. Bortezomib, Selinexor, and Dexamethasone in Patients with Multiple Myeloma (BOSTON). https://www.clinicaltrials.gov/ct2/show/NCT03110562?term=Boston+selinexor&rank=1 accessed 20 Oct 2020.
Baumann R, Depping R, Delaperriere M, Dunst J (2016) Targeting hypoxia to overcome radiation resistance in head & neck cancers: real challenge or clinical fairytale? Expert Rev Anticancer Ther 16:751–758. (PMID: 10.1080/14737140.2016.1192467)
Beck M, Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18:73–89. (PMID: 10.1038/nrm.2016.147)
Berchner-Pfannschmidt U, Tug S, Trinidad B et al (2008) Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J Biol Chem 283:31745–31753. (PMID: 10.1074/jbc.M804390200)
Choi SH, Chung AR, Kang W et al (2014) Silencing of hypoxia-inducible factor-1beta induces anti-tumor effects in hepatoma cell lines under tumor hypoxia. PLoS ONE 9:e103304. (PMID: 10.1371/journal.pone.0103304)
Corno C, Stucchi S, De Cesare M et al (2018) FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in ovarian carcinoma preclinical models. Biochem Pharmacol 147:93–103. (PMID: 10.1016/j.bcp.2017.11.009)
D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18:456–466. (PMID: 10.1016/j.tcb.2008.07.009)
Depping R, Jelkmann W, Kosyna FK (2015) Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl) 93:599–608. (PMID: 10.1007/s00109-015-1276-0)
Depping R, von Fallois M, Landesman Y, Kosyna FK (2019) The nuclear export inhibitor selinexor inhibits hypoxia signaling pathways and 3D spheroid growth of cancer cells. Onco Targets Ther 12:8387–8399. (PMID: 10.2147/OTT.S213208)
Dickmanns A, Monecke T, Ficner R (2015) Structural basis of targeting the Exportin CRM1 in cancer. Cells 4:538–568. (PMID: 10.3390/cells4030538)
Dolgin E (2019) XPO1 inhibitor approved for multiple myeloma. Cancer Discov 9:1150–1151. (PMID: 10.1158/2159-8290.CD-NB2019-085)
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220. https://doi.org/10.1016/j.ccr.2008.01.034. (PMID: 10.1016/j.ccr.2008.01.034183284252643426)
El-Tanani M, Dakir EH, Raynor B, Morgan R (2016) Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers 8:35. (PMID: 10.3390/cancers8030035)
Ferreiro-Neira I, Torres NE, Liesenfeld LF et al (2016) XPO1 inhibition enhances radiation response in preclinical models of rectal cancer. Clin Cancer Res 22:1663–1673. (PMID: 10.1158/1078-0432.CCR-15-0978)
Fukuda M, Asano S, Nakamura T et al (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311. (PMID: 10.1038/36894)
Fung HY, Chook YM (2014) Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 27:52–61. (PMID: 10.1016/j.semcancer.2014.03.002)
Gounder MM, Zer A, Tap WD et al (2016) Phase IB study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol 34:3166–3174. (PMID: 10.1200/JCO.2016.67.6346)
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. (PMID: 10.1016/j.cell.2011.02.013)
Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17:193–201. (PMID: 10.1016/j.tcb.2007.02.003)
Ishizawa J, Kojima K, Hail N Jr et al (2015) Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. Pharmacol Ther 153:25–35. (PMID: 10.1016/j.pharmthera.2015.06.001)
Kosyna FK, Depping R (2018) Controlling the gatekeeper: therapeutic targeting of nuclear transport. Cells 7:221. (PMID: 10.3390/cells7110221)
Mucha-Malecka A, Chrostowska A, Urbanek K, Malecki K (2019) Prognostic factors in patients with T1 glottic cancer treated with radiotherapy. Strahlenther Onkol 195:792–804. (PMID: 10.1007/s00066-019-01481-2)
Neggers JE, Vercruysse T, Jacquemyn M et al (2015) Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol 22:107–116. (PMID: 10.1016/j.chembiol.2014.11.015)
Newlands ES, Rustin GJ, Brampton MH (1996) Phase I trial of elactocin. Br J Cancer 74:648–649. (PMID: 10.1038/bjc.1996.415)
Nie D, Huang K, Yin S et al (2018) KPT-330 inhibition of chromosome region maintenance 1 is cytotoxic and sensitizes chronic myeloid leukemia to Imatinib. Cell Death Discov 4:48. (PMID: 10.1038/s41420-018-0049-2)
Pickens JA, Tripp RA (2018) Verdinexor targeting of CRM1 is a promising therapeutic approach against RSV and influenza viruses. Viruses 10:48. (PMID: 10.3390/v10010048)
Pientka FK, Hu J, Schindler SG et al (2012) Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling. J Cell Sci 125:5168–5176. (PMID: 22946054)
Ranganathan P, Kashyap T, Yu X et al (2016) XPO1 inhibition using selinexor synergizes with chemotherapy in acute myeloid leukemia by targeting DNA repair and restoring topoisomerase iialpha to the nucleus. Clin Cancer Res 22:6142–6152. (PMID: 10.1158/1078-0432.CCR-15-2885)
Sakakibara K, Saito N, Sato T et al (2011) CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 118:3922–3931. (PMID: 10.1182/blood-2011-01-333138)
Silva G, Marins M, Chaichanasak N et al (2018) Trans-chalcone increases p53 activity via DNAJB1/HSP40 induction and CRM1 inhibition. PLoS ONE 13:e0202263. (PMID: 10.1371/journal.pone.0202263)
Steinhoff A, Pientka FK, Mockel S et al (2009) Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem Biophys Res Commun 387:705–711. (PMID: 10.1016/j.bbrc.2009.07.090)
Stelma T, Chi A, van der Watt PJ et al (2016) Targeting nuclear transporters in cancer: diagnostic, prognostic and therapeutic potential. IUBMB Life 68:268–280. (PMID: 10.1002/iub.1484)
Strofer M, Jelkmann W, Metzen E et al (2011) Stabilisation and knockdown of HIF–two distinct ways comparably important in radiotherapy. Cell Physiol Biochem 28:805–812. (PMID: 10.1159/000335794)
Tang L, Wei F, Wu Y et al (2018) Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res 37:87. (PMID: 10.1186/s13046-018-0758-7)
Terry S, Faouzi Zaarour R, Hassan Venkatesh G et al (2018) Role of hypoxic stress in regulating tumor immunogenicity, resistance and plasticity. Int J Mol Sci 19:3044. (PMID: 10.3390/ijms19103044)
Turner JG, Sullivan DM (2008) CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr Med Chem 15:2648–2655. (PMID: 10.2174/092986708786242859)
van der Watt PJ, Maske CP, Hendricks DT et al (2009) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840. (PMID: 10.1002/ijc.24146)
Wahba A, Rath BH, O’Neill JW et al (2018) The XPO1 inhibitor selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown in vitro and in vivo. Mol Cancer Ther 17:1717–1726. (PMID: 10.1158/1535-7163.MCT-17-1303)
Xu D, Grishin NV, Chook YM (2012) NESdb: a database of NES-containing CRM1 cargoes. Mol Biol Cell 23:3673–3676. (PMID: 10.1091/mbc.e12-01-0045)
Yao Y, Dong Y, Lin F et al (2009) The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep 21:229–235. (PMID: 19082467)
Zheng Y, Gery S, Sun H et al (2014) KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma. Cancer Chemother Pharmacol 74:487–495. (PMID: 10.1007/s00280-014-2495-8)
Grant Information:
KO5512/2-1 Deutsche Forschungsgemeinschaft
Contributed Indexing:
Keywords: CRM1; HIF; Hypoxia; Nuclear transport; Radiotherapy; Selinexor
Substance Nomenclature:
0 (HIF1A protein, human)
0 (Hydrazines)
0 (Hypoxia-Inducible Factor 1, alpha Subunit)
0 (Karyopherins)
0 (Radiation-Sensitizing Agents)
0 (Receptors, Cytoplasmic and Nuclear)
0 (Triazoles)
31TZ62FO8F (selinexor)
Entry Date(s):
Date Created: 20210415 Date Completed: 20210607 Latest Revision: 20231213
Update Code:
20240104
PubMed Central ID:
PMC8164574
DOI:
10.1007/s00432-021-03626-2
PMID:
33856525
Czasopismo naukowe
Background: The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localization of HIF-1α and radiosensitivity.
Methods: Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2-8 Gy after treatment with Selinexor compared to untreated controls.
Results: Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells.
Conclusion: Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies