Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Parsimony vs predictive and functional performance of three stomatal optimization principles in a big-leaf framework.

Tytuł:
Parsimony vs predictive and functional performance of three stomatal optimization principles in a big-leaf framework.
Autorzy:
Bassiouni M; Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden.
Vico G; Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, 750 07, Sweden.
Źródło:
The New phytologist [New Phytol] 2021 Jul; Vol. 231 (2), pp. 586-600. Date of Electronic Publication: 2021 May 31.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Ecosystem*
Plant Stomata*
Photosynthesis ; Physical Functional Performance ; Plant Leaves ; Plant Transpiration ; Water ; Xylem
References:
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN et al. 2018a. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561: 538-541.
Anderegg WRL, Wolf A, Arango-Velez A, Choat B, Chmura DJ, Jansen S, Kolb T, Li S, Meinzer FC, Pita P et al. 2018b. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters 21: 968-977.
Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J, ed. Progress in photosynthesis research: vol. 4. Proceedings of the VIIth international congress on photosynthesis, providence, Rhode Island, USA, 10-15 August 1986. Dordrecht, the Netherlands: Springer, 221-224.
Bassiouni M. 2020. Diagnostics of ecosystem-scale stomatal optimization models. Zenodo. doi: 10.5281/zenodo.4386353.
Bassiouni M, Good SP, Still CJ, Higgins CW. 2020. Plant water uptake thresholds inferred from satellite soil moisture. Geophysical Research Letters 47: e2020GL087077.
Bonan G. 2019. Climate change and terrestrial ecosystem modeling. Cambridge, UK: Cambridge University Press, 354.
Brooks RH, Corey AT. 1964. Hydraulic properties of porous media. Fort Collins, CO, USA: Colorado State University.
Buckley TN. 2017. Modeling stomatal conductance. Plant Physiology 174: 572-582.
Buckley TN, Sack L, Farquhar GD. 2017. Optimal plant water economy. Plant, Cell & Environment 40: 881-896.
Cover TM, Thomas JA. 2012. Elements of information theory. New York, NY, USA: John Wiley & Sons.
Cowan IR. 1982. Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, ed. Encyclopedia of plant physiology. Physiological plant ecology II: Water relations and carbon assimilation. Berlin/Heidelberg: Springer, 589-613.
Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471-505.
De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC et al. 2013. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology 19: 1759-1779.
Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T. 2018. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytologist 217: 571-585.
Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL, Meir P, Friend AD, Mencuccini M, Sitch S et al. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. hydraulic traits retrieved using London Series B: Biological Sciences 373: 20170315.
Eller CB, Rowland L, Mencuccini M, Rosas T, Williams K, Harper A, Medlyn BE, Wagner Y, Klein T, Teodoro GS et al. 2020. Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist 226: 1622-1637.
Fatichi S, Pappas C, Ivanov VY. 2016. Modeling plant-water interactions: an ecohydrological overview from the cell to the global scale. WIREs Water 3: 327-368.
Feddes RA, Kowalik PJ, Zaradny H. 1978. Simulation of field water use and crop yield. Simulation monographs. Wageningen, the Netherlands: Halsted Press.
Feng X. 2020. Marching in step: The importance of matching model complexity to data availability in terrestrial biosphere models. Global Change Biology 26: 3190-3192.
Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Quéré CL et al. 2019. Global carbon budget 2019. Earth System Science Data 11: 1783-1838.
Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate 27: 511-526.
Gentine P, Green JK, Guérin M, Humphrey V, Seneviratne SI, Zhang Y, Zhou S. 2019. Coupling between the terrestrial carbon and water cycles-a review. Environmental Research Letters 14: 83003.
Goldstein AH, Hultman NE, Fracheboud JM, Bauer MR, Panek JA, Xu M, Qi Y, Guenther AB, Baugh W. 2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology 101: 113-129.
Good SP, Noone D, Bowen G. 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349: 175-177.
Goodwell AE, Jiang P, Ruddell BL, Kumar P. 2020. Debates-Does information theory provide a new paradigm for earth science? Causality, interaction, and feedback. Water Resources Research 56: e2019WR024940.
Goodwell AE, Kumar P. 2017. Temporal information partitioning: characterizing synergy, uniqueness, and redundancy in interacting environmental variables. Water Resources Research 53: 5920-5942.
Goodwell AE, Kumar P, Fellows AW, Flerchinger GN. 2018. Dynamic process connectivity explains ecohydrologic responses to rainfall pulses and drought. Proceedings of the National Academy of Sciences, USA 115: E8604-E8613.
Katul GG, Palmroth S, Oren R. 2009. Leaf stomatal responses to vapour pressure deficit under current and CO2-enriched atmosphere explained by the economics of gas exchange. Plant, Cell & Environment 32: 968-979.
Knauer J, Zaehle S, Medlyn BE, Reichstein M, Williams CA, Migliavacca M, De Kauwe MG, Werner C, Keitel C, Kolari P et al. 2018. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Global Change Biology 24: 694-710.
Lavergne A, Graven H, Kauwe MGD, Keenan TF, Medlyn BE, Prentice IC. 2019. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Global Change Biology 25: 2242-2257.
Leuning R, Kelliher FM, Pury DGGD, Schulze E-D. 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell & Environment 18: 1183-1200.
Li X, Gentine P, Lin C, Zhou S, Sun Z, Zheng Y, Liu J, Zheng C. 2019. A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agricultural and Forest Meteorology 265: 171-182.
Lin C, Gentine P, Huang Y, Guan K, Kimm H, Zhou S. 2018. Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture. Agricultural and Forest Meteorology 250-251: 24-34.
Lin Y-S, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios V, Mitchell P, Ellsworth DS et al. 2015. Optimal stomatal behaviour around the world. Nature Climate Change 5: 459-464.
Liu Y, Kumar M, Katul GG, Feng X, Konings AG. 2020a. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nature Climate Change 10: 691-695.
Liu Y, Holtzman NM, Konings AG. 2020b. Global ecosystem-scale plant hydraulic traits retrieved using model-data fusion. Hydrology and Earth System Sciences Discussions. doi: 10.5194/hess-2020-649.
Lu Y, Duursma RA, Medlyn BE. 2016. Optimal stomatal behaviour under stochastic rainfall. Journal of Theoretical Biology 394: 160-171.
Lu Y, Duursma RA, Farrior CE, Medlyn BE, Feng X. 2020. Optimal stomatal drought response shaped by competition for water and hydraulic risk can explain plant trait covariation. New Phytologist 225: 1206-1217.
Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates: optimal leaf gas exchange under water stress. Functional Ecology 25: 456-467.
Manzoni S, Vico G, Katul G, Palmroth S, Jackson RB, Porporato A. 2013a. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. New Phytologist 198: 169-178.
Manzoni S, Vico G, Palmroth S, Porporato A, Katul G. 2013b. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Advances in Water Resources 62: 90-105.
Medlyn BE, De Kauwe MG, Lin Y-S, Knauer J, Duursma RA, Williams CA, Arneth A, Clement R, Isaac P, Limousin J-M et al. 2017. How do leaf and ecosystem measures of water-use efficiency compare? New Phytologist 216: 758-770.
Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PD, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology 17: 2134-2144.
Mencuccini M, Manzoni S, Christoffersen B. 2019a. Modelling water fluxes in plants: from tissues to biosphere. New Phytologist 222: 1207-1222.
Mencuccini M, Rosas T, Rowland L, Choat B, Cornelissen H, Jansen S, Kramer K, Lapenis A, Manzoni S, Niinemets Ü et al. 2019b. Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist 224: 1544-1556.
Monteith JL. 1965. Evaporation and environment. Symposia of the Society for Experimental Biology 19: 205-234.
Mrad A, Sevanto S, Domec J-C, Liu Y, Nakad M, Katul G. 2019. A dynamic optimality principle for water use strategies explains isohydric to anisohydric plant responses to drought. Frontiers in Forests and Global Change 2: 49.
Nearing GS, Gupta HV. 2015. The quantity and quality of information in hydrologic models. Water Resources Research 51: 524-538.
Nearing GS, Ruddell BL, Clark MP, Nijssen B, Peters-Lidard C. 2018. Benchmarking and process diagnostics of land models. Journal of Hydrometeorology 19: 1835-1852.
Nearing GS, Ruddell BL, Bennett AR, Prieto C, Gupta HV. 2020. Does information theory provide a new paradigm for earth science? Hypothesis testing. Water Resources Research 56: e2019WR024918.
Newville M, Stensitzki T, Allen DB, Ingargiola A. 2014. LMFIT: non-linear least-square minimization and curve-fitting for python. Zenodo. doi: 10.5281/zenodo.598352.
Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi A, Papuga SA, Blanken PD, Noormets A, Sulman BN et al. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change 6: 1023-1027.
Or D, Lehmann P, Shahraeeni E, Shokri N. 2013. Advances in soil evaporation physics-a review. Vadose Zone Journal 12: vzj2012.0163.
Pappas C, Fatichi S, Burlando P. 2016. Modeling terrestrial carbon and water dynamics across climatic gradients: does plant trait diversity matter? New Phytologist 209: 137-151.
Paschalis A, Fatichi S, Zscheischler J, Ciais P, Bahn M, Boysen L, Chang J, De Kauwe M, Estiarte M, Goll D et al. 2020. Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology 26: 3336-3355.
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M et al. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data 7: 225.
Penman HL, Keen BA. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 193: 120-145.
Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü et al. 2017. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist 213: 22-42.
Ruddell BL, Drewry DT, Nearing GS. 2019. Information theory for model diagnostics: structural error is indicated by trade-off between functional and predictive performance. Water Resources Research 55: 6534-6554.
Ruddell BL, Kumar P. 2009. Ecohydrologic process networks: 2. Analysis and characterization. Water Resources Research 45: 3.
Sabot MEB, Kauwe MGD, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, Abramowitz G. 2020. Plant profit maximization improves predictions of European forest responses to drought. New Phytologist 226: 1638-1655.
Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, Mackay DS, Wang Y, Love DM. 2017. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment 40: 816-830.
Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang Y, Tai X. 2019. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences, USA 116: 25734-25744.
Vico G, Manzoni S, Palmroth S, Weih M, Katul G. 2013. A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. Agricultural and Forest Meteorology 182-183: 191-199.
Wang Y, Sperry JS, Anderegg WRL, Venturas MD, Trugman AT. 2020. A theoretical and empirical assessment of stomatal optimization modeling. New Phytologist 227: 311-325.
Weijs SV, Ruddell BL. 2020. Debates: does information theory provide a new paradigm for earth science? Sharper predictions using Occam’s digital razor. Water Resources Research 56: e2019WR026471.
Weijs SV, Schoups G, van de Giesen N. 2010. Why hydrological predictions should be evaluated using information theory. Hydrology and Earth System Sciences 14: 2545-2558.
Williams PL, Beer RD. 2010. Nonnegative decomposition of multivariate information. https://arxiv.org/abs/1102.1507v1. [accessed 1 January 2020].
Wolf A, Anderegg WRL, Pacala SW. 2016. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences, USA 113: E7222-E7230.
Zenes N, Kerr KL, Trugman AT, Anderegg WRL. 2020. Competition and drought alter optimal stomatal strategy in tree seedlings. Frontiers in Plant Science 11: 478.
Contributed Indexing:
Keywords: information theory; model performance; optimality theory; photosynthesis; stomatal conductance; transpiration; water use efficiency; xylem vulnerability
Substance Nomenclature:
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20210417 Date Completed: 20210618 Latest Revision: 20210618
Update Code:
20240104
DOI:
10.1111/nph.17392
PMID:
33864268
Czasopismo naukowe
Stomatal optimization models can improve estimates of water and carbon fluxes with relatively low complexity, yet there is no consensus on which formulations are most appropriate for ecosystem-scale applications. We implemented three existing analytical equations for stomatal conductance, based on different water penalty functions, in a big-leaf comparison framework, and determined which optimization principles were most consistent with flux tower observations from different biomes. We used information theory to dissect controls of soil water supply and atmospheric demand on evapotranspiration in wet to dry conditions and to quantify missing or inadequate information in model variants. We ranked stomatal optimization principles based on parameter uncertainty, parsimony, predictive accuracy, and functional accuracy of the interactions between soil moisture, vapor pressure deficit, and evapotranspiration. Performance was high for all model variants. Water penalty functions with explicit representation of plant hydraulics did not substantially improve predictive or functional accuracy of ecosystem-scale evapotranspiration estimates, and parameterizations were more uncertain, despite having physiological underpinnings at the plant level. Stomatal optimization based on water use efficiency thus provided more information about ecosystem-scale evapotranspiration compared to those based on xylem vulnerability and proved more useful in improving ecosystem-scale models with less complexity.
(© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies