Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species.

Tytuł:
Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species.
Autorzy:
Renard J; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Martínez-Almonacid I; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Queralta Castillo I; Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada.
Sonntag A; Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada.
Hashim A; Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada.
Bissoli G; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Campos L; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Muñoz-Bertomeu J; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Niñoles R; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Roach T; Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria.
Sánchez-León S; Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain.
Ozuna CV; Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain.
Gadea J; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Lisón P; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Kranner I; Institute of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, A-6020, Austria.
Barro F; Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), Córdoba, 14004, Spain.
Serrano R; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Molina I; Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, P6A 2G4, Canada.
Bueso E; Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia, 46022, Spain.
Źródło:
The New phytologist [New Phytol] 2021 Jul; Vol. 231 (2), pp. 679-694. Date of Electronic Publication: 2021 May 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
MeSH Terms:
Arabidopsis*/genetics
Arabidopsis*/metabolism
Arabidopsis Proteins*/genetics
Arabidopsis Proteins*/metabolism
Gene Expression Regulation, Plant ; Genes, Homeobox ; Seeds/metabolism ; Transcription Factors/genetics ; Transcription Factors/metabolism
References:
Bailly C, El-Maarouf-Bouteau H, Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331: 806-814.
Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE. 2009. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genetics 5: e1000492.
Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. 2007. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19: 351-368.
Braybrook SA, Harada JJ. 2008. LECs go crazy in embryo development. Trends in Plant Science 13: 624-630.
Bueso E, Muñoz-Bertomeu J, Campos F, Brunaud V, Martínez L, Sayas E, Ballester P, Yenush L, Serrano R. 2014. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for gibberellins in seed longevity. Plant Physiology 164: 999-1010.
Bueso E, Muñoz-Bertomeu J, Campos F, Martínez C, Tello C, Martínez-Almonacid I, Ballester P, Simón-Moya M, Brunaud V, Yenush L et al. 2016. Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration. The Plant Journal 87: 583-596.
Bueso E, Serrano R, Pallás V, Sánchez-Navarro JA. 2017. Seed tolerance to deterioration in Arabidopsis is affected by virus infection. Plant Physiology and Biochemistry 116: 1-8.
Bürglin TR, Affolter M. 2016. Homeodomain proteins: an update. Chromosoma 125: 497-521.
Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J. 2010. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proceedings of the National Academy of Sciences, USA 107: 21908-21913.
Chai M, Zhou C, Molina I, Fu C, Nakashima J, Li G, Zhang W, Park J, Tang Y, Jiang Q et al. 2016. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proceedings of the National Academy of Sciences, USA 113: 6997-7002.
Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. 2009. CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiology 150: 1831-1843.
Cottle W, Kolattukudy PE. 1982. Abscisic acid stimulation of suberization: induction of enzymes and deposition of polymeric components and associated waxes in tissue cultures of potato tuber. Plant Physiology 70: 775-780.
Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122: 403-414.
Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family-an update. Current Opinion in Plant Biology 45: 36-49.
Duek PD, Fankhauser C. 2005. bHLH class transcription factors take centre stage in phytochrome signalling. Trends in Plant Science 10: 51-54.
Eastmond PJ. 2004. Glycerol-insensitive Arabidopsis mutants: gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. The Plant Journal 37: 617-625.
Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research 30: 207-210.
Espelie KE, Davis RW, Kolattukudy PE. 1980. Composition, ultrastructure and function of the cutin- and suberin-containing layers in the leaf, fruit peel, juice-sac and inner seed coat of grapefruit (Citrus paradisi Macfed.). Planta 149: 498-511.
Fedi F, O’Neill CM, Menard G, Trick M, Dechirico S, Corbineau F, Bailly C, Eastmond PJ, Penfield S. 2017. Awake1, an ABC-type transporter, reveals an essential role for suberin in the control of seed dormancy. Plant Physiology 174: 276-283.
Franich RA, Gadgil PD, Shain L. 1983. Fungistatic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiological Plant Pathology 23: 183-195.
Franke R, Höfer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L. 2009. The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. The Plant Journal 57: 80-95.
Gendrel A-V, Lippman Z, Martienssen R, Colot V. 2005. Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods 2: 213-218.
De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mène-Saffrané L, Lopez-Molina L. 2015. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genetics 11: e1005708.
Gou M, Hou G, Yang H, Zhang X, Cai Y, Kai G, Liu C-J. 2017. The MYB107 transcription factor positively regulates suberin biosynthesis. Plant Physiology 173: 1045-1058.
Gou J-Y, Yu X-H, Liu C-J. 2009. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proceedings of the National Academy of Sciences 106: 18855-18860.
Griffith M, Huner NPA, Espelie KE, Kolattukudy PE. 1985. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves. Protoplasma 125: 53-64.
Haughn G, Chaudhury A. 2005. Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science 10: 472-477.
He H, de Souza VD, Snoek LB, Schnabel S, Nijveen H, Hilhorst H, Bentsink L. 2014. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. Journal of Experimental Botany 65: 6603-6615.
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular Cell 38: 576-589.
Holland PWH. 2013. Evolution of homeobox genes. WIREs Developmental Biology 2: 31-45.
Kim Y-C, Nakajima M, Nakayama A, Yamaguchi I. 2005. Contribution of gibberellins to the formation of Arabidopsis seed coat through starch degradation. Plant and Cell Physiology 46: 1317-1325.
Kocsy G. 2015. Die or survive? Redox changes as seed viability markers. Plant, Cell & Environment 38: 1008-1010.
Kolattukudy PE. 2001. Polyesters in higher plants. In: Babel W, Steinbüchel A, eds. Advances in biochemical engineering/biotechnology. Biopolyesters. Berlin/Heidelberg, Germany: Springer, 1-49.
Kolattukudy PE, Espelie KE. 1989. Chemistry, biochemistry, and function of suberin and associated waxes. In: Rowe JW, ed. Springer series in wood science. Natural products of woody plants: chemicals extraneous to the lignocellulosic cell wall. Berlin/Heidelberg, Germany: Springer, 304-367.
Kurdyukov S, Faust A, Nawrath C, Bär S, Voisin D, Efremova N, Franke R, Schreiber L, Saedler H, Métraux J-P et al. 2006. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell 18: 321-339.
Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L et al. 2016. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28: 2097-2116.
Leide J, Hildebrandt U, Hartung W, Riederer M, Vogg G. 2012. Abscisic acid mediates the formation of a suberized stem scar tissue in tomato fruits. New Phytologist 194: 402-415.
Lendzian KJ. 1982. Gas permeability of plant cuticles. Planta 155: 310-315.
Leprince O, Pellizzaro A, Berriri S, Buitink J. 2017. Late seed maturation: drying without dying. Journal of Experimental Botany 68: 827-841.
Li Y, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J. 2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proceedings of the National Academy of Sciences, USA 104: 18339-18344.
MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K, Paszkiewicz K, Smirnoff N, Penfield S. 2015. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytologist 205: 642-652.
Martin LBB, Romero P, Fich EA, Domozych DS, Rose JKC. 2017. Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid. Plant Physiology 174: 1384-1398.
Matzke K, Riederer M. 1990. The composition of the cutin of the caryopses and leaves of Triticum aestivum L. Planta 182: 461.
Molina I, Bonaventure G, Ohlrogge J, Pollard M. 2006. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67: 2597-2610.
Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M. 2009. Identification of an Arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis. Plant Physiology 151: 1317-1328.
Molina I, Ohlrogge JB, Pollard M. 2008. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal 53: 437-449.
Mullin WJ, Xu W. 2001. Study of soybean seed coat components and their relationship to water absorption. Journal of Agricultural and Food Chemistry 49: 5331-5335.
Nagel M, Kranner I, Neumann K, Rolletschek H, Seal CE, Colville L, Fernández-Marín B, Börner A. 2015. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant, Cell & Environment 38: 1011-1022.
Nicolas M, Cubas P. 2016. TCP factors: new kids on the signaling block. Current Opinion in Plant Biology 33: 33-41.
O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165: 1280-1292.
Panikashvili D, Shi JX, Schreiber L, Aharoni A. 2009. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiology 151: 1773-1789.
Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, Seo M, Leprince O, Buitink J. 2020. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytologist 225: 284-296.
Pollard M, Beisson F, Li Y, Ohlrogge JB. 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science 13: 236-246.
Renard J, Martínez-Almonacid I, Sonntag A, Molina I, Moya-Cuevas J, Bissoli G, Muñoz-Bertomeu J, Faus I, Niñoles R, Shigeto J et al. 2020a. PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. Plant, Cell & Environment 43: 315-326.
Renard J, Niñoles R, Martínez-Almonacid I, Gayubas B, Mateos R, Bissoli G, Bueso E, Serrano R, Gadea J. 2020b. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics. Plant, Cell & Environment 43: 2523-2539.
Sano N, Rajjou L, North HM, Debeaujon I, Marion-Poll A, Seo M. 2016. Staying alive: molecular aspects of seed longevity. Plant and Cell Physiology 57: 660-674. doi: 10.1093/pcp/pcv186.
Schnurr J, Shockey J, Browse J. 2004. The Acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16: 629-642.
Shao S, Meyer CJ, Ma F, Peterson CA, Bernards MA. 2007. The outermost cuticle of soybean seeds: chemical composition and function during imbibition. Journal of Experimental Botany 58: 1071-1082.
Shen W, Yao X, Ye T, Ma S, Liu X, Yin X, Wu Y. 2018. Arabidopsis Aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination. Plant and Cell Physiology 59: 1415-1431.
Soliday CL, Dean BB, Kolattukudy PE. 1978. Suberization: inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiology 61: 170-174.
Tan QK-G, Irish VF. 2006. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiology 140: 1095-1108.
Tausch S, Leipold M, Reisch C, Poschlod P. 2019. Dormancy and endosperm presence influence the ex situ conservation potential in central European calcareous grassland plants. AoB PLANTS 11.
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45: W122-W129.
Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubès J, Dittrich-Domergue F, Lessire R, Rowland O, Domergue F. 2013. Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. Plant Physiology 163: 1118-1132.
Waterworth WM, Bray CM, West CE. 2019. Seeds and the art of genome maintenance. Frontiers in Plant Science 10: 706.
Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J. 2010. A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proceedings of the National Academy of Sciences, USA 107: 12040-12045.
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9: R137.
Zhao L, Haslam TM, Sonntag A, Molina I, Kunst L. 2019. Functional overlap of long-chain acyl-CoA synthetases in Arabidopsis. Plant and Cell Physiology 60: 1041-1054.
Zinsmeister J, Leprince O, Buitink J. 2020. Molecular and environmental factors regulating seed longevity. Biochemical Journal 477: 305-323.
Contributed Indexing:
Keywords: Arabidopsis; ChIP-seq; apoplastic lipid barriers; homeobox; seed coat; seed longevity; tomato; wheat
Substance Nomenclature:
0 (Arabidopsis Proteins)
0 (Transcription Factors)
Entry Date(s):
Date Created: 20210417 Date Completed: 20210618 Latest Revision: 20210618
Update Code:
20240104
DOI:
10.1111/nph.17399
PMID:
33864680
Czasopismo naukowe
Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.
(© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies