Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cartiotonic steroids affect monolayer permeability in lymphatic endothelial cells.

Tytuł:
Cartiotonic steroids affect monolayer permeability in lymphatic endothelial cells.
Autorzy:
Horvat D; Orion Institute for Translational Medicine, Temple, TX, USA.; Emergent Biotechnologies LLC, Temple, TX, USA.
Afroze SH; Orion Institute for Translational Medicine, Temple, TX, USA.; Emergent Biotechnologies LLC, Temple, TX, USA.
Cromer WE; Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA.
Pantho AF; Orion Institute for Translational Medicine, Temple, TX, USA.; Emergent Biotechnologies LLC, Temple, TX, USA.
Ashraf AHMZ; Baylor Scott and White Health Medical Center, Temple, TX, USA.
Kuehl TJ; Orion Institute for Translational Medicine, Temple, TX, USA.; Emergent Biotechnologies LLC, Temple, TX, USA.
Zawieja DC; Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA.
Uddin MN; Orion Institute for Translational Medicine, Temple, TX, USA. .; Emergent Biotechnologies LLC, Temple, TX, USA. .; Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, USA. .
Źródło:
Molecular and cellular biochemistry [Mol Cell Biochem] 2021 Aug; Vol. 476 (8), pp. 3207-3213. Date of Electronic Publication: 2021 Apr 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
MeSH Terms:
Cell Membrane Permeability*
Bufanolides/*pharmacology
Endothelial Cells/*pathology
Gene Expression Regulation/*drug effects
Nitric Oxide/*metabolism
Vasoconstrictor Agents/*pharmacology
Animals ; Endothelial Cells/drug effects ; Endothelial Cells/metabolism ; Phosphorylation ; Rats
References:
Bridenbaugh EA, Gashev AA, Zawieja DC (2003) Lymphatic muscle: a review of contractile function. Lymphat Res Biol 1:147–158 (Review). (PMID: 10.1089/153968503321642633)
Puschett JB (2006) The role of excessive volume expansion in the pathogenesis of preeclampsia. Med Hypotheses 67:1125–1132. (PMID: 10.1016/j.mehy.2006.04.059)
Pridjian G, Puschett JB (2002) Preeclampsia. Part 1: clinical and pathophysiologic considerations. Obstet Gynecol Surv 57(9):598–618 (Review). (PMID: 10.1097/00006254-200209000-00023)
Cromer WE, Zawieja SD, Tharakan B, Childs EW, Newell MK, Zawieja DC (2013) The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 7:395–406.
Uddin MN, Horvat D, Childs EW, Puschett JB (2009) Marinobufagenin causes endothelial cell monolayer hyperpermeability by altering apoptotic signaling. Am J Physiol Regul Integr Comp Physiol 296:R1726–R1734. (PMID: 10.1152/ajpregu.90963.2008)
Pridjian G, Puschett JB (2002) Preeclampsia. Part 2: experimental and genetic considerations. Obstet Gynecol Surv. 57:619–640. (PMID: 10.1097/00006254-200209000-00024)
Vu H, Ianosi-Irimie MR, Pridjian C, Whitbred JM, Durst JM, Bagrov AY, Fedorova OV, Pridjian G, Puschett JB (2005) The involvement of marinobufagenin in a rat model of human preeclampsia. Am J Nephrol 25:520–528. (PMID: 10.1159/000088461)
Agunanne E, Horvat D, Harrison R, Uddin MN, Jones R, Kuehl TJ, Abi-Ghanem D, Berghman LR, Lai X, Li J, Romo D, Puschett JB (2011) Marinobufagenin levels in preeclamptic patients: a preliminary report. Am J Perinatol. 28:509–514. (PMID: 10.1055/s-0031-1272965)
Lopatin DA, Ailamazian EK, Dmitrieva RI, Shpen VM, Fedorova OV, Doris PA, Bagrov AY (1999) Circulating bufodienolide and cardenolide sodium pump inhibitors in preeclampsia. J Hypertens 17:1179–1187. (PMID: 10.1097/00004872-199917080-00018)
Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Müller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest 123:2803–2815. (PMID: 10.1172/JCI60113)
Delacrétaz E, de Quay N, Waeber B, Vial Y, Schulz PE, Burnier M, Brunner HR, Bossart H, Schaad NC (1995) Differential nitric oxide synthase activity in human platelets during normal pregnancy and pre-eclampsia. Clin Sci (Lond) 88:607–610. (PMID: 10.1042/cs0880607)
Podjarny E, Losonczy G, Baylis C (2004) Animal models of preeclampsia. Semin Nephrol 24:596–606. (PMID: 10.1016/j.semnephrol.2004.07.011)
Greenberg SS, Lancaster JR, Xie J, Sarphie TG, Zhao X, Hua L, Freeman T, Kapusta DR, Giles TD, Powers DR (1997) Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol 273:R1031–R1045. (PMID: 9321883)
Uddin MN, McLean LB, Hunter FA, Horvat D, Severson J, Tharakan B, Childs EW, Puschett JB (2009) Vascular leak in a rat model of preeclampsia. Am J Nephrol 30:26–33. (PMID: 10.1159/000193220)
Uddin MN, Horvat D, Glaser SS, Danchuk S, Mitchell BM, Sullivan DE, Morris CA, Puschett JB (2008) Marinobufagenin inhibits proliferation and migration of cytotrophoblast and CHO cells. Placenta 29:266–273. (PMID: 10.1016/j.placenta.2007.12.009)
Uddin MN, Horvat D, Glaser SS, Mitchell BM, Puschett JB (2008) Examination of the cellular mechanisms by which marinobufagenin inhibits cytotrophoblast function. J Biol Chem 283:17946–17953. (PMID: 10.1074/jbc.M800958200)
Horvat D, Allen SR, Jones RO, Zawieja DC, Kuehl TJ, Uddin MN (2012) Cardiotonic steroids trigger cytotrophoblast dysfunction via cell cycle arrest and apoptotic signaling. J Investig Med 60:19106.
Childs EW, Tharakan B, Hunter FA, Tinsley JH, Cao X (2007) Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 292:H3179–H3189. (PMID: 10.1152/ajpheart.01337.2006)
Ehrig J, Horvat D, Fothergill RE, Allen SR, Jones RO, Zawieja DC, Kuehl TJ, Uddin MN (2013) Cardiotonic steroids induce an anti-angiogenic profile in first trimester cytotrophoblast cells. Am J Obstet Gynecol 208(1):S99. (PMID: 10.1016/j.ajog.2012.10.376)
Durán WN, Beuve AV, Sánchez FA (2013) Nitric oxide, S-nitrosation, and endothelial permeability. IUBMB Life 65:819–826. (PMID: 10.1002/iub.1204)
Sánchez FA, Rana R, González FG, Iwahashi T, Durán RG, Fulton DJ, Beuve AV, Kim DD, Durán WN (2011) Functional significance of cytosolic endothelial nitric-oxide synthase (eNOS): regulation of hyperpermeability. J Biol Chem 286:30409–30414. (PMID: 10.1074/jbc.M111.234294)
Uddin MN, Agunanne E, Horvat D, Puschett JB (2009) Marinobufogenin causes enhanced permeability in human brain microvascular endothelial cells via apoptotic signaling. J Am Soc Nephrol 20:534A.
Wang W, Nepiyushchikh Z, Zawieja DC, Chakraborty S, Zawieja SD, Gashev AA, Davis MJ, Muthuchamy M (2009) Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic contractile activity. Am J Physiol Heart Circ Physiol 297:H726–H734. (PMID: 10.1152/ajpheart.00312.2009)
Moore TM, Norwood NR, Creighton JR, Babal P, Brough GH, Shasby DM, Stevens T (2000) Receptor-dependent activation of store-operated calcium entry increases endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 279:L691–L698. (PMID: 10.1152/ajplung.2000.279.4.L691)
Tharakan B, Hellman J, Sawant DA, Tinsley JH, Parrish AR, Hunter FA, Smythe WR, Childs EW (2012) β-Catenin dynamics in the regulation of microvascular endothelial cell hyperpermeability. Shock 37:306–311. (PMID: 10.1097/SHK.0b013e318240b564)
Wallez Y, Huber P (2007) Endothelial adherens and tight junctions in vascular homeostasis, inflammation, and angiogenesis. Biochim et Biophys Acta (BBA). 1778(3):794–809. (PMID: 10.1016/j.bbamem.2007.09.003)
Gory-Fauré S, Prandini M-H, Pointu H et al (1999) Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126:2093. (PMID: 10.1242/dev.126.10.2093)
Kai S, Lu J-H, Hui P-P, Zhao H (2014) Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun 452:768–774. (PMID: 10.1016/j.bbrc.2014.08.147)
Contributed Indexing:
Keywords: Cardiotonic steroids; Lymphatic endothelial cells permeability; Preeclampsia; Tight junctions
Substance Nomenclature:
0 (Bufanolides)
0 (Vasoconstrictor Agents)
31C4KY9ESH (Nitric Oxide)
3KBT25GV2B (marinobufagenin)
Entry Date(s):
Date Created: 20210418 Date Completed: 20210906 Latest Revision: 20210906
Update Code:
20240104
DOI:
10.1007/s11010-021-04147-9
PMID:
33866492
Czasopismo naukowe
Edema is common in preeclampsia (preE), a hypertensive disorder of pregnancy. Cardiotonic steroids (CTSs) such as marinobufagenin (MBG) are involved in the pathogenesis of preE. To assess whether CTSs are involved in the leakage of lymphatic endothelial cell (LEC), we evaluated their effect on monolayer permeability of LECs (MPLEC) in culture. A rat mesenteric LECs were treated with DMSO (vehicle), and CTSs (MBG, CINO, OUB) at concentrations of 1, 10, and 100 nM. Some LECs were pretreated with 1 μM L-NAME (N-Nitro-L-Arginine Methyl Ester) before adding 100 nM MBG or cinobufotalin (CINO). Expression of β-catenin and vascular endothelial (VE)-cadherin in CTS-treated LECs was measured by immunofluorescence and MPLEC was quantified using a fluorescence plate reader. Western blot was performed to measure β-catenin and VE-cadherin protein levels and myosin light chain 20 (MLC20) phosphorylation. MBG (≥ 1 nM) and CINO (≥ 10 nM) caused an increase (p < 0.05) in the MPLEC compared to DMSO while ouabain (OUB) had no effect. Pretreatment of LECs with 1 μM L-NAME attenuated (p < 0.05) the MPLEC. The β-catenin expression in LECs was downregulated (p < 0.05) by MBG and CINO. However, there was no effect on the LECs tight junctions for the CINO group. VE-cadherin expression was downregulated (p < 0.05) by CINO, and MLC20 phosphorylation was upregulated (p < 0.05) by MBG. We demonstrated that MBG and CINO caused an increase in the MPLEC, which were attenuated by L-NAME pretreatment. The data suggest that CTSs exert their effect via nitric-oxide-dependent signaling pathway and may be involved in vascular leak syndrome of LEC lining in preE.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies