Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.

Tytuł :
Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon.
Autorzy :
Sun H; College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Wang L; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an, China.
Nie H; College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Diwu Z; Shaanxi Key Laboratory of Membrane Separation, Xi'an, China.
Nie M; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an, China.
Zhang B; College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, China.
Pokaż więcej
Źródło :
Biotechnology progress [Biotechnol Prog] 2021 Apr 19, pp. e3155. Date of Electronic Publication: 2021 Apr 19.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
References :
Mahamallik P, Pal A. Degradation of textile wastewater by modified photo-Fenton process: application of co(II) adsorbed surfactant-modified alumina as heterogeneous catalyst. J Environ Chem Eng. 2017;5(3):2886-2893.
Dolman BM, Wang F, Winterburn JB. Integrated production and separation of biosurfactants. Process Biochem. 2019;83:1-8.
Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B: Biointerfaces. 2014;114(8):324-333.
Bai L, Mcclements DJ. Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids. J Colloid Interf Sci. 2016;479:71-79.
Bafghi MK, Fazaelipoor MH. Application of rhamnolipid in the formulation of a detergent. J Surf Deterg. 2012;15(6):679-684.
Engine, MR, Biosurfactants market by type (glycolipids [sophorolipids, rhamnolipids], lipopeptides, phospholipids, polymeric biosurfactants), application (detergents, personal care, agricultural chemicals, food processing), by region analysis - global forecast 2018-2024. 2018.
Van RL, Slkw R, Baccile N, Uyttersprot K. From lab to market: an integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnol Bioeng. 2018;115(5):1195.
Ismail W, Shammary SA, El-Sayed WS, et al. Stimulation of rhamnolipid biosurfactants production in Pseudomonas aeruginosa AK6U by organosulfur compounds provided as sulfur sources. Biotechnol Rep. 2015;7, (C):55-63.
Lan G, Fan Q, Liu Y, et al. Rhamnolipid production from waste cooking oil using pseudomonas SWP-4. Biochem Eng J. 2015;101:44-54.
Reis RS, Pereira AG, Neves BC, Freire DM. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa-a review. Bioresour. Dent Tech. 2011;102(11):6377-6384.
Radzuan MN, Banat IM, Winterburn J. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresour Technol. 2017;225:99-105.
Ozdal M, Gurkok S, Ozdal OG. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech. 2017;7(2):117.
Radzuan MN, Banat IM, Winterburn J. Biorefining palm oil agricultural refinery waste for added value rhamnolipid production via fermentation. Ind Crops Prod. 2018;116:64-72.
Mostafa NA, Tayeb AM, Mohamed OA, Farouq R. Biodegradation of petroleum oil effluents and production of biosurfactants: effect of initial oil concentration. J Surf Detergents. 2019;22(2):385-394.
Araújo CKCD, Campos ADO, Padilha CEDA, Macedo GRD, Santos ESD. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation. Bioresour Technol. 2017;237:20-26.
Nitschke M, Costa SGVAO, Contiero J. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Dent Prog. 2010;21(6):1593-1600.
Pereira JFB, Gudiña EJ, Costa R, et al. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel. 2013;111(9):259-268.
Sodagari M, Invally K, Ju LK. Maximize rhamnolipid production with low foaming and high yield. Enzyme Microb Technol. 2018;110:79-86.
Wadekar SD, Kale SB, Lali AM, Bhowmick DN, Pratap AP. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep Biochem Biotechnol. 2012;42(3):249-266.
Gudina EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR. Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol. 2016;212:144-150.
Nicolo MS, Cambria MG, Impallomeni G, et al. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate. New Biotechnol. 2017;39, (Pt A):36-41.
Gupta GN, Srivastava S, Khare SK, Prakash V. Extremophiles: an overview of microorganism from extreme environment. Inter J Agric, Environ Biotechnol. 2014;7(2):371.
Sun C, Guo F. Influences of different medium formulations on properties and compositions of rhamnolipids produced by Pseudomonas aeruginosa NY3. Environ Prot Technol. 2012;2:31-34.
Malaiwong N, Yongmanitchai W, Chonudomkul D. Optimization of arachidonic acid production from Mortierella alpina PRAO7-10 by response surface methodology. Agr Natural Resour. 2016;50(3):162-172.
Singh A, Bajar S, Bishnoi NR. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Bioresour. Technol. 2017;244(Pt 1):71.
Han X, Song W, Liu G, Li Z, Yang P, Qu Y. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour Technol. 2017;227:155.
Nie MQ, Yin XH, Ren CY, et al. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv. 2010;28(5):635-643.
Cao G, Ding C, Ruan D, et al. Gas chromatography-mass spectrometry based profiling reveals six monoglycerides as markers of used cooking oil. Food Control. 2019;96:494-498.
Borrero-de Acuña JM, Aravena-Carrasco C, Gutierrez-Urrutia I, Duchens D, Poblete-Castro I. Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem. 2019;77:23-30.
Zhang TJ, Liang JQ, Wei XY, et al. Development of an enzymatic synthesis approach to produce phloridzin using malus x domestica glycosyltransferase in engineered Pichia pastoris GS115. Process Biochem. 2017;59:187-193.
Long X, Sha R, Qin M, Zhang G. Mechanism study on the severe soaming of rhamnolipid in fermentation. J Surf Deterg. 2016;19(4):833-840.
He N, Wu T, Jiang J, Long X, Shao B, Meng Q. Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Colloids Surf B Biointerfaces. 2017;157:317-324.
Charles Oluwaseun A, Julius Kola O, Mishra P. Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sust Chem Phar. 2017;6:26-36.
Varjani SJ, Upasani VN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresour Technol. 2016;221:510-516.
Ji F, Li L, Ma S, Wang J, Bao Y. Production of rhamnolipids with a high specificity by Pseudomonas aeruginosa M408 isolated from petroleum-contaminated soil using olive oil as sole carbon source. Ann Microbiol. 2016;66(3):1145-1156.
Funston SJ, Tsaousi K, Smyth TJ. Enhanced rhamnolipid production in Burkholderia thailandensis transposon knockout strains deficient in polyhydroxyalkanoate (PHA) synthesis. Appl Microbiol Biotechnol. 2017;101(23-24):8443-8454.
Smyth TJP, Perfumo A, Marchant R, Banat IM. Isolation and analysis of low molecular weight microbial glycolipids. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer; 2010:3705-3723.
Nogueira Felix AK, Martins JJL, Lima Almeida JG, Giro MEA. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids Surf B Biointerfaces. 2018;175:256-263.
Abdel-Mawgoud AM, Lépine F, Déziel E. A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol. 2014;21(1):156-164.
Lin Z, Pemberton JE, Maier RM. Effect of fatty acid substrate chain length on Pseudomonas aeruginosa ATCC 9027 monorhamnolipid yield and congener distribution. Process Biochem. 2014;49(6):989-995.
Hori K, Ichinohe R, Unno H, Marsudi S. Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J. 2011;53(2):196-202.
Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2016;223:277-286.
Zhang Y, Wang Y, Wang Z, et al. Optimization of fermentation medium for the production of atrazine degrading strain acinetobacter sp. DNS32 by statistical analysis system. J Biomed Biotechnol. 2012;2012(2):1-7.
Deepika KV, Kalam S, Ramu Sridhar P, Podile AR, Bramhachari PV. Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocataly. Agricul.L Biotechnol. 2016;5:38-47.
Pérez-Armendáriz B, Cal-Y-Mayor-Luna C, El-Kassis EG, Ortega-Martínez LD. Use of waste canola oil as a low-cost substrate for rhamnolipid production using Pseudomonas aeruginosa. AMB Exp. 2019;9(1):1-9.
Shi J, Chen Y, Liu X, Li D. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa M4. J Clean Prod. 2021;278:123879.
Pathania AS, Jana AK. Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: improvement through co-substrate optimization. J Env Chem Eng. 2020;8(5):104304.
Sharma S, Datta P, Kumar B, Tiwari P, Pandey LM. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Biodegradation. 2019;30(4):301-312.
Ramírez IM, Vaz DA, Banat IM, Marchant R, Alameda EJ, Román MG. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour Technol. 2016;205:1-6.
Leticia Dobler BRDC. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium. PLoS ONE. 2017;12(8):e0183857.
Zhao F, Zhou J, Han S, Ma F. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. World J Microbiol Biotechnol. 2016;32(4):54.
Rahimi K, Lotfabad TB, Jabeen F, Mohammad Ganji S. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids Surf B Biointerfaces. 2019;181:943-952.
Nitschke M, Costa SG, Haddad R, Gonçalves LA, Eberlin MN, Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Dent Prog. 2010;21(5):1562-1566.
Raza ZA, Khan MS, Khalid ZM. Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Environ Sci Heal. 2007;42(1):73-80.
Dobler L, Vilela LF, Almeida RV, Neves BC. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol. 2016;33(1):123-135.
Gerardo M, Katy J, Gloria SC. The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol. 2003;185(1):377.
Galkin NB, Abedalabas M, Pachomova EY, Filipova TO. The effect of Pseudomonas aeruginosa signal quinolone on the rhamnolipids biosynththesis and rhamnosyltransferase acticity. Euro Sci J Suppl. 2014;3:223-228.
Rk C, Ls R, D, A, V, S, Vasudevan V, Krishnan M. Demonstration of bioprocess factors optimization for enhanced mono-rhamnolipid production by a marine Pseudomonas guguanensis. Inter J Biolog Macromol. 2018;108:531-540.
Rahman KS, Rahman TJ, Mcclean S, Marchant R, Banat IM. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Dent Prog. 2010;18(6):1277-1281.
Sánchez M, Aranda FJ, Espuny MJ, et al. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J Colloid Interf Sci. 2007;307(1):246-253.
Brocca P, Rondelli V, Corti M, Favero ED, Deleu M, Cantu L. Interferometric investigation of the gas-state monolayer of mono-rhamnolipid adsorbing at an oil/water interface. J Molecur Liq. 2018;266:687-691.
Oliveira FJS, Vazquez L, Campos NPD, França FPD. Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process. Biochemistry. 2009;44(4):383-389.
Grant Information :
18JK0449 Special Scientific Research Foundation of Education Department of Shaanxi Provincial Government of China; 2017ZDCXL-GY-07-03 Shaanxi Province Key Industrial Cluster Project; 2017KCT-19-01 Innovation Team Plan of Shaanxi Province Key Science and Technology
Contributed Indexing :
Keywords: Plackett-Burman design; Pseudomonas aeruginosa NY3; Rhamnolipid; congeners; response surface methodology
Entry Date(s) :
Date Created: 20210419 Latest Revision: 20210429
Update Code :
Czasopismo naukowe
Yield and cost are two major factors limiting the widespread use of rhamnolipids (RLs). In the present study, waste frying oil (WFO) was used as the sole carbon source to produce environmentally friendly RLs by Pseudomonas aeruginosa NY3. The Plackett-Burman design (PBD) and Box-Behnken design (BBD) methods were used to maximize the production yield of RL. The PBD results showed that the concentrations of NaNO 3 , Na 2 HPO 4 , and trace elements were the key factors affecting the yield of RL. Furthermore, the BBD results showed that at NaNO 3 , Na 2 HPO 4 , and trace elements concentrations were 4.95, 0.66, and 0.64 mL/L, respectively, the average RL yield reached 9.15 ± 0.52 g/L, 1.58-fold higher than that observed before optimization. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-ion trap-time of flight mass spectrometry (LCMS-IT-TOF) were used to elucidate the diversity of RL congeners. The results showed that, after optimization, the RL congener diversity increased, and the major RL constituent was converted from di-RLs (64.04%) to mono-RLs (60.44%). These results suggested that the concentrations of the components contained in the culture medium of P. aeruginosa NY3 influenced not only the yield of RL, but also its congener distribution.
(© 2021 American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies