Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies.

Tytuł:
Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies.
Autorzy:
Wolfe TM; Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria.
Bruzzese DJ; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Klasson L; Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
Corretto E; Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.
Lečić S; Department of Evolutionary Biology, Ludwig-Maximilians University, Munich, Germany.
Stauffer C; Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria.
Feder JL; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Schuler H; Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.
Źródło:
Molecular ecology [Mol Ecol] 2021 Dec; Vol. 30 (23), pp. 6259-6272. Date of Electronic Publication: 2021 May 07.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
MeSH Terms:
Tephritidae*/genetics
Wolbachia*/genetics
Animals ; Drosophila ; Multilocus Sequence Typing ; Symbiosis/genetics
References:
Ecol Evol. 2020 Oct 28;10(23):12727-12744. (PMID: 33304490)
PLoS Pathog. 2015 Feb 12;10(2):e1004672. (PMID: 25675099)
Syst Biol. 2007 Aug;56(4):564-77. (PMID: 17654362)
Genetics. 2019 Aug;212(4):1399-1419. (PMID: 31227544)
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873-8. (PMID: 8610134)
Curr Biol. 2018 Mar 19;28(6):963-971.e8. (PMID: 29526588)
PLoS Pathog. 2018 Oct 15;14(10):e1007364. (PMID: 30321239)
PLoS Genet. 2013 Apr;9(4):e1003381. (PMID: 23593012)
Appl Environ Microbiol. 2009 Sep;75(17):5676-86. (PMID: 19592535)
PLoS Genet. 2012;8(12):e1003129. (PMID: 23284297)
Mol Ecol. 2013 Aug;22(15):4101-11. (PMID: 23844658)
Trends Ecol Evol. 2004 Sep;19(9):470-4. (PMID: 16701309)
Oecologia. 2009 Jun;160(3):563-75. (PMID: 19352719)
mBio. 2015 Nov 10;6(6):e01732-15. (PMID: 26556278)
Exp Appl Acarol. 2015 Jul;66(3):301-11. (PMID: 25921489)
Nature. 2017 Mar 9;543(7644):243-247. (PMID: 28241146)
Mol Biol Evol. 2021 Jan 4;38(1):2-15. (PMID: 32797213)
Science. 2011 Nov 18;334(6058):990-2. (PMID: 22021671)
Heredity (Edinb). 2004 Oct;93(4):379-89. (PMID: 15305172)
Front Microbiol. 2020 Nov 13;11:595629. (PMID: 33281793)
Annu Rev Entomol. 2014;59:13-30. (PMID: 24112110)
Nat Commun. 2020 Oct 16;11(1):5235. (PMID: 33067437)
Genetica. 2011 Dec;139(11-12):1449-64. (PMID: 22447527)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
PLoS Biol. 2008 Dec 23;6(12):e2. (PMID: 19222304)
Nucleic Acids Res. 2018 Jan 4;46(D1):D851-D860. (PMID: 29112715)
PLoS Biol. 2004 Mar;2(3):E69. (PMID: 15024419)
Infect Genet Evol. 2016 Jul;41:1-7. (PMID: 26997548)
Mol Ecol. 2009 Sep;18(18):3816-30. (PMID: 19732336)
Bioinformatics. 2014 May 1;30(9):1312-3. (PMID: 24451623)
Nat Rev Microbiol. 2008 Oct;6(10):741-51. (PMID: 18794912)
Nature. 1971 Aug 27;232(5313):657-8. (PMID: 4937405)
BMC Evol Biol. 2017 Feb 6;17(1):42. (PMID: 28166715)
ISME J. 2017 Apr;11(4):1019-1028. (PMID: 27935594)
Nat Commun. 2016 Oct 11;7:13155. (PMID: 27727237)
Mol Ecol. 2003 Apr;12(4):1061-75. (PMID: 12753224)
F1000Res. 2019 Dec 23;8:2138. (PMID: 31984131)
Insects. 2019 Jun 14;10(6):. (PMID: 31208002)
BMC Evol Biol. 2016 May 27;16(1):118. (PMID: 27233666)
Appl Environ Microbiol. 2006 Nov;72(11):7098-110. (PMID: 16936055)
Genome Res. 2017 May;27(5):737-746. (PMID: 28100585)
Biol Lett. 2018 May;14(5):. (PMID: 29794009)
PLoS One. 2013 Dec 20;8(12):e82402. (PMID: 24376534)
Genome Res. 2011 Mar;21(3):487-93. (PMID: 21209072)
Mol Phylogenet Evol. 1997 Feb;7(1):33-43. (PMID: 9007018)
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10788-93. (PMID: 23744038)
Bioinformatics. 2015 Oct 1;31(19):3210-2. (PMID: 26059717)
Genome Biol Evol. 2018 Feb 1;10(2):434-451. (PMID: 29351633)
Nat Biotechnol. 2019 May;37(5):540-546. (PMID: 30936562)
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537. (PMID: 24722319)
Biogerontology. 2016 Nov;17(5-6):785-803. (PMID: 27230747)
Elife. 2020 Sep 25;9:. (PMID: 32975515)
Genome Res. 2009 Sep;19(9):1639-45. (PMID: 19541911)
PLoS One. 2011;6(7):e22198. (PMID: 21789233)
Genome Res. 2017 May;27(5):722-736. (PMID: 28298431)
Mol Biol Evol. 1999 Dec;16(12):1711-23. (PMID: 10605113)
Mol Ecol. 2008 Jan;17(2):557-69. (PMID: 18179432)
J Invertebr Pathol. 2010 Jan;103 Suppl 1:S96-119. (PMID: 19909970)
Science. 2008 Oct 31;322(5902):702. (PMID: 18974344)
Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21. (PMID: 27141966)
Genome Biol Evol. 2020 May 1;12(5):720-735. (PMID: 32163151)
Trends Plant Sci. 2008 Jun;13(6):288-94. (PMID: 18467157)
PLoS Pathog. 2006 May;2(5):e43. (PMID: 16710453)
Mol Biol Evol. 2022 Jan 7;39(1):. (PMID: 34662426)
Biol Rev Camb Philos Soc. 2021 Apr;96(2):433-453. (PMID: 33128345)
PLoS Comput Biol. 2018 Jan 26;14(1):e1005944. (PMID: 29373581)
PLoS One. 2013 Apr 10;8(4):e60232. (PMID: 23593179)
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5725-30. (PMID: 19307581)
PLoS Genet. 2013;9(12):e1003896. (PMID: 24348259)
J Bacteriol. 1998 May;180(9):2373-8. (PMID: 9573188)
Nat Microbiol. 2017 Mar 01;2:17007. (PMID: 28248294)
PLoS One. 2014 Nov 19;9(11):e112963. (PMID: 25409509)
Genome Biol. 2020 Jul 22;21(1):180. (PMID: 32698896)
Mol Ecol. 2016 Apr;25(7):1595-609. (PMID: 26846713)
Heredity (Edinb). 2018 Mar;120(3):266-281. (PMID: 29234159)
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5446-51. (PMID: 11344292)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
FEMS Microbiol Ecol. 2018 Jan 1;94(1):. (PMID: 29186405)
Evolution. 2016 May;70(5):979-97. (PMID: 27076356)
Mol Biol Evol. 2008 Sep;25(9):1877-87. (PMID: 18550617)
Mol Ecol. 2002 Nov;11(11):2425-34. (PMID: 12406252)
Bioinformatics. 2018 Sep 15;34(18):3094-3100. (PMID: 29750242)
PLoS Genet. 2019 Jun 26;15(6):e1008221. (PMID: 31242186)
Nature. 1991 Oct 3;353(6343):440-2. (PMID: 1896086)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Microorganisms. 2020 Oct 12;8(10):. (PMID: 33053771)
Proc Biol Sci. 2015 May 22;282(1807):20150249. (PMID: 25904667)
Bioinformatics. 2014 Jul 15;30(14):2068-9. (PMID: 24642063)
BMC Bioinformatics. 2011 Jan 26;12:35. (PMID: 21269502)
Mol Biol Evol. 2010 Feb;27(2):221-4. (PMID: 19854763)
Nat Commun. 2019 Nov 28;10(1):5436. (PMID: 31780650)
Grant Information:
P 31441 Austria FWF_ Austrian Science Fund FWF
Contributed Indexing:
Keywords: Rhagoletis cerasi; Rhagoletis cingulata; Wolbachia; horizontal transfer; invasive species; prophage
Molecular Sequence:
GENBANK CP072012; JX073687.1; KJ546857.1; JX073689.1; KJ546853.1; JX073685.1; KJ546849.1; JX073691.1; KJ546845.1; JX073683.1; KJ546841.1; JX073681.1; AF418557.1
Entry Date(s):
Date Created: 20210421 Date Completed: 20220128 Latest Revision: 20230426
Update Code:
20240104
PubMed Central ID:
PMC9290052
DOI:
10.1111/mec.15923
PMID:
33882628
Czasopismo naukowe
Wolbachia is a maternally inherited obligate endosymbiont that can induce a wide spectrum of effects in its host, ranging from mutualism to reproductive parasitism. At the genomic level, recombination within and between strains, transposable elements, and horizontal transfer of strains between host species make Wolbachia an evolutionarily dynamic bacterial system. The invasive cherry fruit fly Rhagoletis cingulata arrived in Europe from North America ~40 years ago, where it now co-occurs with the native cherry pest R. cerasi. This shared distribution has been proposed to have led to the horizontal transfer of different Wolbachia strains between the two species. To better understand transmission dynamics, we performed a comparative genome study of the strain wCin2 in its native United States and invasive European populations of R. cingulata with wCer2 in European R. cerasi. Previous multilocus sequence genotyping (MLST) of six genes implied that the source of wCer2 in R. cerasi was wCin2 from R. cingulata. However, we report genomic evidence discounting the recent horizontal transfer hypothesis for the origin of wCer2. Despite near identical sequences for the MLST markers, substantial sequence differences for other loci were found between wCer2 and wCin2, as well as structural rearrangements, and differences in prophage, repetitive element, gene content, and cytoplasmic incompatibility inducing genes. Our study highlights the need for whole-genome sequencing rather than relying on MLST markers for resolving Wolbachia strains and assessing their evolutionary dynamics.
(© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies