Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development and Validation of a Discriminatory Dissolution Model for an Immediately Release Dosage Form by DOE and Statistical Approaches.

Tytuł:
Development and Validation of a Discriminatory Dissolution Model for an Immediately Release Dosage Form by DOE and Statistical Approaches.
Autorzy:
Fu M; Sunovion Pharmaceuticals, 84 Waterford Dr, Marlborough, Massachusetts, 01752, USA. .
Conroy E; Sunovion Pharmaceuticals, 84 Waterford Dr, Marlborough, Massachusetts, 01752, USA.
Byers M; Quality Chemical Laboratories, 3220A Corporate Dr, Wilmington, North Carolina, 28405, USA.
Pranatharthiharan L; Sunovion Pharmaceuticals, 84 Waterford Dr, Marlborough, Massachusetts, 01752, USA.
Bilbault T; Sunovion Pharmaceuticals, 84 Waterford Dr, Marlborough, Massachusetts, 01752, USA.
Źródło:
AAPS PharmSciTech [AAPS PharmSciTech] 2021 Apr 21; Vol. 22 (4), pp. 140. Date of Electronic Publication: 2021 Apr 21.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Springer
Original Publication: Arlington, VA : American Association of Pharmaceutical Scientists, c2000-
MeSH Terms:
Models, Chemical*
Tablets*
Linear Models ; Multivariate Analysis ; Reproducibility of Results ; Solubility ; Water
References:
Dressman J, Kramer J. Pharmaceutical dissolution testing. New York: Marcel Dekker; 2005. https://doi.org/10.1201/9780849359170 . (PMID: 10.1201/9780849359170)
Azarmi S, Roa W, Lobenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328(1):12–21. https://doi.org/10.1016/j.ijpharm.2006.10.001 . (PMID: 10.1016/j.ijpharm.2006.10.00117084051)
FDA guidance for industry, dissolution testing of immediate release solid oral dosage forms. 1997. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-immediate-release-solid-oral-dosage-forms .
FDA guidance for Industry, SUPAC-MR: modified release solid oral dosage forms scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro dissolution testing and in vivo bioequivalence documentation: guidance for industry. 1997. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/supac-mr-modified-release-solid-oral-dosage-forms-scale-and-postapproval-changes-chemistry .
FDA guidance for Industry, SUPAC-IR: immediate-release solid oral dosage forms: scale-up and post-approval changes: chemistry, manufacturing and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. 1995. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/supac-ir-immediate-release-solid-oral-dosage-forms-scale-and-post-approval-changes-chemistry .
Hermans A, Abend AM, Kesisoglou F, Flanagan T, Cohen MJ, Diaz DA, et al. Approaches for establishing clinically relevant dissolution specifications for immediate release solid oral dosage forms. AAPS J. 2017;19:1537–49. https://doi.org/10.1208/s12248-017-0117-1 . (PMID: 10.1208/s12248-017-0117-128831727)
Gray VA. Power of the dissolution test in distinguishing a change in dosage form critical quality attributes. AAPS PharmSciTech. 2018;19(8):3328–31. https://doi.org/10.1208/s12249-018-1197-7 . (PMID: 10.1208/s12249-018-1197-7303502516848239)
Gray V, Kelly G, Xia M, Butler C, Thomas S, Mayock S. The science of USP 1 and 2 dissolution: present challenges and future relevance. Pharm Res. 2009;26(6):1289–302. https://doi.org/10.1007/s11095-008-9822-x . (PMID: 10.1007/s11095-008-9822-x19165579)
FDA guidance for industry, extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. 1997. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/extended-release-oral-dosage-forms-development-evaluation-and-application-vitroin-vivo-correlations .
Stillhart C, Parrott NJ, Lindenberg M, Chalus P, Bentley D, Szepes A. Characterizing drug release from immediate-release formulations of a poorly soluble compound, basmisanil, through absorption modelling and dissolution testing. AAPS J. 2017;19:827–36. https://doi.org/10.1208/s12248-017-0060-1 . (PMID: 10.1208/s12248-017-0060-128236228)
Li Z, He X, Tian S, Feng G, Huang C, Xun M, et al. Simultaneous evaluation of dissolution and permeation of oral drug solid formulations for predicting absorption rate – limiting factors and in vitro-in vivo correlations: case study using a poorly soluble weakly basic drug. AAPS PharmSciTech. 2019;20:321. https://doi.org/10.1208/s12249-019-1544-3 . (PMID: 10.1208/s12249-019-1544-331650430)
FDA guidance for industry, dissolution testing and acceptance criteria for immediate-release solid oral dosage form drug products containing high solubility drug substances guidance for industry. 2018. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-and-acceptance-criteria-immediate-release-solid-oral-dosage-form-drug-products .
FDA guidance for industry, waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. guidance for industry. 2017. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/waiver-vivo-bioavailability-and-bioequivalence-studies-immediate-release-solid-oral-dosage-forms .
Silva ASD, Silva CEDR, Paula FR, Silva FEBD. Discriminative dissolution method for benzoyl metronidazole oral suspension. AAPS PharmSciTech. 2016;17(3):778–86. https://doi.org/10.1208/s12249-015-0407-9 . (PMID: 10.1208/s12249-015-0407-926349689)
Xia D, Cui F, Piao H, Cun D, Piao H, Jiang Y, et al. Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats. Pharm Res. 2010;27:1965–776. https://doi.org/10.1166/jbn.2009.1052 . (PMID: 10.1166/jbn.2009.105220585842)
Zhao J, Koo O, Pan D, Wu Y, Morkhade D, Rana S, et al. The impact of disintegrant type, surfactant and API properties on the processability and performance of roller compacted formulations of acetaminophen and aspirin. AAPS J. 2017;19(5):1387–95. https://doi.org/10.1208/s12248-017-0104-6 . (PMID: 10.1208/s12248-017-0104-628608238)
Beg S, Hasnain MS. Pharm Qual Des. 2019. https://doi.org/10.1016/C2017-0-03874-0 .
Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding Pharmaceutical quality by design. AAPS J. 2014;16:771–83. https://doi.org/10.1208/s12248-014-9598-3 . (PMID: 10.1208/s12248-014-9598-3248548934070262)
Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25:781–91. https://doi.org/10.1007/s11095-008-9667-3 . (PMID: 10.1007/s11095-008-9667-318185986)
FDA guidance for Industry, Q8(R2) Pharmaceutical Development Principles and Applications. 2009. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q8r2-pharmaceutical-development .
ICH Q8(R2) Pharmaceutical Development. 2009. https://database.ich.org/sites/default/files/Q8%28R2%29%20Guideline.pdf .
Mercuri A, Pagliari M, Baxevanis F, Fares R, Fotaki N. Understanding and Predicting the Impact of Critical Dissolution Variables for Nifedipine Immediate Release Capsules by Multivariate Data Analysis. Int. J. Pharm. 2017;518:41–9. https://doi.org/10.1016/j.ijpharm.2016.12.034 . (PMID: 10.1016/j.ijpharm.2016.12.03428011342)
Henríquez LS, Redondo GM, Zŭňiga, Berrocal GC. Design of experiments for the establishment of the dissolution test conditions of rupatadine fumarate 10 mg tablets. J Drug Deliv Ther. 2019;9(1):331–6. https://doi.org/10.22270/jddt.v9i1-s.2359 . (PMID: 10.22270/jddt.v9i1-s.2359)
Kolla SB, Vallabhaneni MR, Puttagunta SB, Venkata MS. Design of experiments approach to discriminatory dissolution method development of poorly soluble drug in immediate release dosage form. In J Pharm Ed and Res. 2019;53(3):435–45. https://doi.org/10.5530/ijper.53.3.76 . (PMID: 10.5530/ijper.53.3.76)
Huang J, Goolcharran C, Ghosh K. A quality by design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods. Eur J Pharm. Biopharm. 2011;78:141–50. https://doi.org/10.1016/j.ejpb.2010.12.012 . (PMID: 10.1016/j.ejpb.2010.12.01221168490)
Dumarey M, Goodwin DJ, Davison C. Multivariate modelling to study the effect of the manufacturing process on the complete tablet dissolution profile. Int J Pharm. 2015;486(1-2):112–20. https://doi.org/10.1016/j.ijpharm.2015.03.040 . (PMID: 10.1016/j.ijpharm.2015.03.04025797055)
Yekpe K, Abatzoglou N, Bataille B, Gosselin R, Sharkawi T, Simard JS, et al. Developing a quality by design approach to model tablet dissolution testing: an industrial case study. Pharm Dev Techno. 2018;23(6):646–54. https://doi.org/10.1080/10837450.2017.1392566 . (PMID: 10.1080/10837450.2017.1392566)
Qazi S, Samuel NKP, Venkatachalam TK, Uckun FM. Evaluating dissolution profiles of an anti-HIV Agent Using ANOVA and Non-linear Regression Models in JMP Software. Int J Pharm. 2003;252(1-2):27–39. https://doi.org/10.1016/S0378-5173(02)00603-8 . (PMID: 10.1016/S0378-5173(02)00603-812550778)
Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, et al. First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing. AAPS J. 2019;21(3):32. https://doi.org/10.1208/s12248-019-0297-y . (PMID: 10.1208/s12248-019-0297-y307902006394641)
Paixao P, Gouveia LF, Silva N, Morais JAG. Evaluation of Dissolution Profile Similarity – Comparison between the f2, the multivariate statistical distance and the f2 bootstrapping methods. Eur J Pharm Biopharm. 2017;112:67–74. https://doi.org/10.1016/j.ejpb.2016.10.026 . (PMID: 10.1016/j.ejpb.2016.10.02627865857)
Kapplipi CA, Hatziavramidis DT. Dissolution Efficiency and Design Space for an Oral Pharmaceutical Product in Tablet Form. Ind Eng Chem Res. 2015;54:6305–10. https://doi.org/10.1021/ie5050567 . (PMID: 10.1021/ie5050567)
Krishnan NMA, Mangalathu S, Smedskjaer MM, Tandia A, Burton H, Bauchy M. Predicting the Dissolution Kinetics of Silicate Glasses Using Marching Learning. Journal of Non-Crystalline Solids. 2018;487:37–45. https://doi.org/10.1016/j.jnoncrysol.2018.02.023 . (PMID: 10.1016/j.jnoncrysol.2018.02.023)
Susto GA, McLoone S. Slow Release Drug Dissolution Profile Prediction in Pharmaceutical Manufacturing: A Multivariate and Machine Learning Approach. IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg. 2015:1218–23. https://doi.org/10.1109/CoASE.2015.7294264 .
ICH Q1B Stability Testing: Photostability Testing of New Drug Substances and Products. https://database.ich.org/sites/default/files/Q1B%20Guideline.pdf .
United States Pharmacopeia (USP) compendial test <701> Disintegration https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/april-2019-m99460.pdf .
United States Pharmacopeia (USP) compendial test <711> Dissolution. https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/stage_6_monograph_25_feb_2011.pdf.
Stoyneva V, Momekova D, Kostova B, Petrov P. Stimuli Sensitive Super-macroporous Cryogels Based on Photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydrate Polymers. 2014;99:825–30. https://doi.org/10.1016/j.carbpol.2013.08.095 . (PMID: 10.1016/j.carbpol.2013.08.09524274575)
Gupta P, Trenor SR, Long TE, Wilkes GL. In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methylmethacrylate-co-2-hydroxyethyl acrylate) Fibers during Electrospinning. Macromolecules. 2004;37(24):9211–8. https://doi.org/10.1021/ma048844g . (PMID: 10.1021/ma048844g)
Markl D, Zeitler AJ. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm Res. 2017;34(5):890–917. https://doi.org/10.1007/s11095-017-2129-z . (PMID: 10.1007/s11095-017-2129-z282514255382187)
Suewertm M, Weinandy K, Whiteman D, Judkins C. Typical Variability and Evaluation of Sources of Variability in Drug Dissolution Testing. Eur J Pharm Biopharm. 2002;53:9–14. https://doi.org/10.1016/S0939-6411(01)00213-2 . (PMID: 10.1016/S0939-6411(01)00213-2)
FDA Guidance for Industry, Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs — General Considerations. 2014. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-submitted-ndas-or-inds-general-considerations .
Nickerson B, Kong A, Gerst P, Kao S. Correlation of Dissolution and Disintegration Results for an Immediate-release Tablet. J Pharm Biomed Anal. 2018;150:333–40. https://doi.org/10.1016/j.jpba.2017.12.017 . (PMID: 10.1016/j.jpba.2017.12.01729287259)
Radwan A, Amidon GL, Langguth P. Mechanistic Investigation of Food Effect on Disintegration and Dissolution of BCS Class III Compound Solid Formulations: The Importance of Viscosity. Biopharm Drug Dispos. 2012;33:403–16. https://doi.org/10.1002/bdd.1798 . (PMID: 10.1002/bdd.179822782559)
Contributed Indexing:
Keywords: DOE; discriminatory; dissolution; statistic
Substance Nomenclature:
0 (Tablets)
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20210422 Date Completed: 20210520 Latest Revision: 20210520
Update Code:
20231215
DOI:
10.1208/s12249-021-02011-z
PMID:
33884530
Czasopismo naukowe
A discriminatory dissolution model was built through DOE with multivariate analysis of variance (MANOVA) and multiple linear regression (MLR) modeling to assess dissolution operational space for a highly water soluble immediate-release solid dosage drug product. The dissolution was utilized in the following five aspects: (1) understand the impact of individual variables and their interactions on dissolution performance through effect analysis; (2) explain the lack of discriminatory power of the initial dissolution condition used in early phase development by prediction profiler; (3) predict discriminatory dissolution operational space to differentiate photo degraded drug products from control with contour profiler analysis; (4) validate by the external experimental data acquired with the initial nondiscriminatory dissolution condition and the predicted discriminatory dissolution condition, followed by model independent statistical analysis (e.g., f2); and (5) establish correlation of the discriminatory dissolution with disintegration. The selected discriminatory dissolution method was validated by demonstrating accuracy, precision and linearity, specificity, repeatability, intermediate precision, stability, filter verification, and robustness.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies