Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement.

Tytuł:
Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement.
Autorzy:
Nishimoto R; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Department of Anesthesiology and Resuscitology, Okayama University Hospital, 700-8558 Okayama, Japan.
Derouiche S; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.
Eto K; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8585 Okazaki, Japan.
Deveci A; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.
Kashio M; Department of Physiology, Aichi Medical University, 480-1195 Nagakute, Japan.
Kimori Y; Department of Management and Information Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 910-8505 Fukui, Japan.
Matsuoka Y; Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 700-8558 Okayama, Japan.
Morimatsu H; Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 700-8558 Okayama, Japan.
Nabekura J; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8585 Okazaki, Japan.
Tominaga M; Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan; .; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585 Okazaki, Japan.; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan.; Institute for Environmental and Gender-Specific Medicine, Juntendo University, 279-0021 Chiba, Japan.
Źródło:
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2021 Apr 27; Vol. 118 (17).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Washington, DC : National Academy of Sciences
MeSH Terms:
Cell Movement/*physiology
Microglia/*metabolism
TRPV Cation Channels/*metabolism
Animals ; Cells, Cultured ; Central Nervous System/metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Signal Transduction ; TRPV Cation Channels/physiology ; Temperature ; Transient Receptor Potential Channels/metabolism
References:
Pflugers Arch. 2018 May;470(5):745-759. (PMID: 29484488)
Infect Immun. 2000 Mar;68(3):1265-70. (PMID: 10678936)
Biochem Biophys Res Commun. 2006 Nov 24;350(3):762-7. (PMID: 17027915)
Br J Pharmacol. 2014 Apr;171(7):1600-13. (PMID: 24433510)
Curr Opin Neurobiol. 2010 Oct;20(5):595-600. (PMID: 20705452)
J Neurosci Res. 2005 Aug 1;81(3):357-62. (PMID: 15948177)
Am J Physiol Cell Physiol. 2003 Jul;285(1):C96-101. (PMID: 12777254)
Mol Brain. 2011 Jun 17;4:27. (PMID: 21682853)
J Biol Chem. 2015 May 15;290(20):12443-50. (PMID: 25855789)
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6745-50. (PMID: 22493272)
Glia. 2019 Dec;67(12):2294-2311. (PMID: 31453646)
Front Physiol. 2019 Jun 18;10:757. (PMID: 31275168)
Nat Med. 2008 Jul;14(7):738-47. (PMID: 18542050)
Eur J Cell Biol. 2009 Mar;88(3):141-52. (PMID: 19027987)
J Neuroinflammation. 2012 Jul 09;9:164. (PMID: 22776061)
J Vis Exp. 2018 Jun 5;(136):. (PMID: 29939190)
Brain Behav. 2012 May;2(3):345-56. (PMID: 22741103)
Pflugers Arch. 2015 Oct;467(10):2107-19. (PMID: 25559845)
Paediatr Anaesth. 2011 Apr;21(4):347-58. (PMID: 21371165)
Compr Physiol. 2013 Jan;3(1):59-119. (PMID: 23720281)
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12480-5. (PMID: 23818608)
Annu Rev Physiol. 2017 Feb 10;79:619-643. (PMID: 27959620)
Glia. 2012 May;60(5):761-70. (PMID: 22331560)
Br J Pharmacol. 2008 Apr;153(8):1697-705. (PMID: 18297105)
J Cell Biol. 2009 Jul 13;186(1):113-28. (PMID: 19596850)
Am J Physiol. 1999 Jun;276(6):R1653-60. (PMID: 10362744)
Nat Immunol. 2007 Mar;8(3):312-20. (PMID: 17293867)
Annu Rev Physiol. 2006;68:619-47. (PMID: 16460286)
Biotechnol Bioeng. 2006 Apr 5;93(5):829-35. (PMID: 16329142)
J Clin Invest. 2014 Dec;124(12):5225-38. (PMID: 25365224)
J Neurobiol. 2004 Oct;61(1):3-12. (PMID: 15362149)
Am J Physiol Cell Physiol. 2004 Jan;286(1):C129-37. (PMID: 14512294)
J Neurosci. 2007 Feb 14;27(7):1566-75. (PMID: 17301165)
J Immunol. 2010 Sep 1;185(5):2836-46. (PMID: 20656926)
J Neurosci. 2009 Apr 1;29(13):3974-80. (PMID: 19339593)
Brain Res Brain Res Rev. 2005 Dec 1;50(1):27-56. (PMID: 15890410)
Cell Calcium. 2015 Mar;57(3):214-21. (PMID: 25533790)
Nature. 1997 Oct 23;389(6653):816-24. (PMID: 9349813)
Physiol Rev. 2011 Apr;91(2):461-553. (PMID: 21527731)
Nat Med. 2003 Feb;9(2):149-50. (PMID: 12563318)
Proc Soc Exp Biol Med. 1971 Oct;138(1):350-2. (PMID: 5125534)
Cell Calcium. 2009 Mar;45(3):226-32. (PMID: 19046767)
Nature. 2005 Dec 15;438(7070):1022-5. (PMID: 16355226)
Nat Rev Neurosci. 2012 Feb 22;13(4):267-78. (PMID: 22353781)
Br J Pharmacol. 2015 May;172(10):2459-68. (PMID: 25573456)
FASEB J. 2014 May;28(5):2238-48. (PMID: 24509911)
Sci Rep. 2019 Mar 12;9(1):4182. (PMID: 30862883)
Nature. 2007 Apr 26;446(7139):1091-5. (PMID: 17410128)
PLoS One. 2010 Jul 19;5(7):e11654. (PMID: 20657843)
J Neurol Neurosurg Psychiatry. 2001 Oct;71(4):448-54. (PMID: 11561026)
Nature. 1999 Apr 1;398(6726):436-41. (PMID: 10201375)
Nat Neurosci. 2005 Jun;8(6):752-8. (PMID: 15895084)
Aging Cell. 2014 Feb;13(1):60-9. (PMID: 23953759)
Nat Rev Immunol. 2015 Jun;15(6):335-49. (PMID: 25976513)
Science. 2005 May 27;308(5726):1314-8. (PMID: 15831717)
Handb Exp Pharmacol. 2014;223:v - vi. (PMID: 25296415)
Contributed Indexing:
Keywords: TRP channels; TRPV4; microglia; movement
Substance Nomenclature:
0 (TRPV Cation Channels)
0 (Transient Receptor Potential Channels)
0 (Trpv4 protein, mouse)
Entry Date(s):
Date Created: 20210423 Date Completed: 20211207 Latest Revision: 20211214
Update Code:
20240104
PubMed Central ID:
PMC8092382
DOI:
10.1073/pnas.2012894118
PMID:
33888579
Czasopismo naukowe
Microglia maintain central nervous system homeostasis by monitoring changes in their environment (resting state) and by taking protective actions to equilibrate such changes (activated state). These surveillance and protective roles both require constant movement of microglia. Interestingly, induced hypothermia can reduce microglia migration caused by ischemia, suggesting that microglia movement can be modulated by temperature. Although several ion channels and transporters are known to support microglia movement, the precise molecular mechanism that regulates temperature-dependent movement of microglia remains unclear. Some members of the transient receptor potential (TRP) channel superfamily exhibit thermosensitivity and thus are strong candidates for mediation of this phenomenon. Here, we demonstrate that mouse microglia exhibit temperature-dependent movement in vitro and in vivo that is mediated by TRPV4 channels within the physiological range of body temperature. Our findings may provide a basis for future research into the potential clinical application of temperature regulation to preserve cell function via manipulation of ion channel activity.
Competing Interests: The authors declare no competing interest.
(Copyright © 2021 the Author(s). Published by PNAS.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies