Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early-life stress and consequences for adult fear response.

Tytuł:
Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early-life stress and consequences for adult fear response.
Autorzy:
Zetter MA; Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Hernández VS; Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Roque A; Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Hernández-Pérez OR; Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Gómora MJ; Department of Embryology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Ruiz-Velasco S; Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.
Eiden LE; Section on Molecular Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
Zhang L; Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Źródło:
Journal of neuroendocrinology [J Neuroendocrinol] 2021 Jul; Vol. 33 (7), pp. e12969. Date of Electronic Publication: 2021 Apr 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2010->: Malden, MA : Wiley & Sons
Original Publication: Eynsham, Oxon, UK : Oxford University Press, c1989-
MeSH Terms:
Stress, Psychological*/physiopathology
Stress, Psychological*/psychology
Dentate Gyrus/*physiology
Fear/*psychology
Microglia/*physiology
Neuronal Plasticity/*physiology
Aging/psychology ; Animals ; Animals, Newborn ; Axon Initial Segment/physiology ; Dendritic Spines/physiology ; Dentate Gyrus/cytology ; Female ; Male ; Maternal Deprivation ; Microglia/cytology ; Pregnancy ; Rats ; Rats, Wistar ; Sex Characteristics
References:
Nelson CA 3rd, Zeanah CH, Fox NA. How early experience shapes human development: the case of psychosocial deprivation. Neural Plast. 2019;2019:1676285.
Wang D, Levine JLS, Avila-Quintero V, Bloch M, Kaffman A. Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Transl Psychiatry. 2020;10:174.
Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993;18:195-200.
Hofer MA. Maternal separation affects infant rats' behavior. Behav Biol. 1973;9:629-633.
Sierra A, Paolicelli RC, Kettenmann H. Cien Anos de Microglia: milestones in a century of microglial research. Trends Neurosci. 2019;42:778-792.
Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 2015;36:605-613.
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: a focus on extrinsic factors. Glia. 2020;68:1100-1113.
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456-1458.
Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39:151-170.
Lawson LJ, Perry VH, Gordon S. Microglial responses to physiological change: osmotic stress elevates DNA synthesis of neurohypophyseal microglia. Neuroscience. 1993;56:929-938.
Hanisch UK. Functional diversity of microglia - how heterogeneous are they to begin with? Front Cell Neurosci. 2013;7:65.
Baalman K, Marin MA, Ho TSY, et al. Axon initial segment-associated microglia. J Neurosci. 2015;35:2283-2292.
Gesell R. Forces driving the respiratory act: a fundamental concept of the integration of motor activity. Science. 1940;91:229-233.
Huang CY, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci. 2018;1420:46-61.
Kosaka T. The axon initial segment as a synaptic site: ultrastructure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region). J Neurocytol. 1980;9:861-882.
Kosaka T. Axon initial segments of the granule cell in the rat dentate gyrus: synaptic contacts on bundles of axon initial segments. Brain Res. 1983;274:129-134.
Somogyi P, Nunzi MG, Gorio A, Smith AD. A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res. 1983;259:137-142.
Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu JY. Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. Neurosci. 1983;3(7):1450-68. https://doi.org/10.1523/JNEUROSCI.03-07-01450.
Zhang L, Hernandez VS. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience. 2013;228:139-162.
Zhang L, Hernández VS, Liu B, et al. Hypothalamic vasopressin system regulation by maternal separation: its impact on anxiety in rats. Neuroscience. 2012;215:135-148.
Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT. Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron. 2003;37:485-497.
Madronal N, Delgado-Garcia J, Fernandez-Guizan A, et al. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nat Commun. 2016;7:10923.
Wei L, Hao J, Lacher RK, et al. Early-life stress perturbs key cellular programs in the developing mouse hippocampus. Dev Neurosci. 2015;37:476-488.
Wei L, Simen A, Mane S, Kaffman A. Early life stress inhibits expression of a novel innate immune pathway in the developing hippocampus. Neuropsychopharmacology. 2012;37:567-580.
Hernandez VS, Ruiz-Velazco S, Zhang L. Differential effects of osmotic and SSR149415 challenges in maternally separated and control rats: the role of vasopressin on spatial learning. Neurosci Lett. 2012;528:143-147.
Plotsky PM, Thrivikraman KV, Nemeroff CB, et al. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology. 2005;30:2192-2204.
Irles C, Nava-Kopp AT, Morán J, Zhang L. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus. Stress. 2014;17:275-284.
VanRyzin JW, Marquardt AE, Argue KJ, et al. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron. 2019;102:435-449 e6.
Sengupta P. The laboratory rat: relating its age with human's. Int J Prev Med. 2013;4:624-630.
Inoue T, Yamakage H, Tanaka M, Kusakabe T, Shimatsu A, Satoh-Asahara N. Oxytocin suppresses inflammatory responses induced by lipopolysaccharide through inhibition of the eIF-2-ATF4 pathway in mouse microglia. Cells. 2019;8:527.
Xu S, Qin B, Shi A, Zhao J, Guo X, Dong L. Oxytocin inhibited stress induced visceral hypersensitivity, enteric glial cells activation, and release of proinflammatory cytokines in maternal separated rats. Eur J Pharmacol. 2018;818:578-584.
Jezova D, Skultetyova I, Tokarev DI, Bakos P, Vigas M. Vasopressin and oxytocin in stress. Ann N Y Acad Sci. 1995;771:192-203.
Benner S, Endo T, Endo N, Kakeyama M, Tohyama C. Early deprivation induces competitive subordinance in C57BL/6 male mice. Physiol Behav. 2014;137:42-52.
Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience. 2011;172:74-93.
Zhang L, Hernández VS, Vázquez-Juárez E, Chay FK, Barrio RA. Thirst is associated with suppression of habenula output and active stress coping: is there a role for a non-canonical vasopressin-glutamate pathway? Front Neural Circuits. 2016;10:13.
Zaqout S, Kaindl AM. Golgi-cox staining step by step. Front Neuroanat. 2016;10:38.
Young K, Morrison H. Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ. J Vis Exp. 2018;136:e57648.
Zhang L, Hernández VS, Swinny JD, et al. A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Transl Psychiatry. 2018;8:50.
Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology. 1995;121:66-72.
Altman J, Bayer SA. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 1990;301:365-381.
Hristova M, Cuthill D, Zbarsky V, et al. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia. 2010;58:11-28.
Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci. 2020;21:153-168.
Aronov D, Nevers R, Tank DW. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature. 2017;543:719-722.
Jinno S, Fleischer F, Eckel S, Schmidt V, Kosaka T. Spatial arrangement of microglia in the mouse hippocampus: a stereological study in comparison with astrocytes. Glia. 2007;55:1334-1347.
McCarthy MM. Location, location, location: microglia are where they live. Neuron. 2017;95:233-235.
De Biase LM, Schuebel KE, Fusfeld ZH, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 2017;95:341-356 e6.
Smith KR, Penzes P. Ankyrins: roles in synaptic biology and pathology. Mol Cell Neurosci. 2018;91:131-139.
Fernández-Arjona MM, Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. Microglia morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Frontiers in Cellular Neuroscience. 2017;11:235.
Gómez-González B, Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol. 2010;119:303-315.
Davis EJ, Foster TD, Thomas WE. Cellular forms and functions of brain microglia. Brain Res Bull. 1994;34:73-78.
Karperien A, Ahammer H, Jelinek HF. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci. 2013;7:3.
Parkhurst CN, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596-1609.
Liu YU, Ying Y, Li Y, et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci. 2019;22:1771-1781.
Sipe GO, et al. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun. 2016;7:10905.
Chaaya N, Jacques A, Belmer A, et al. Contextual fear conditioning alter microglia number and morphology in the rat dorsal hippocampus. Front Cell Neurosci. 2019;13:214.
Wainwright DA, Xin J, Sanders VM, Jones KJ. Differential actions of pituitary adenylyl cyclase-activating polypeptide and interferon gamma on Th2- and Th1-associated chemokine expression in cultured murine microglia. J Neurodegener Regen. 2008;1:31-34.
Carniglia L, Ramírez D, Durand D, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017;2017:5048616.
Bialas AR, Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013;16:1773-1782.
Contributed Indexing:
Keywords: Iba1; ankyrin-G; auditory fear response; axon initial segment spine; maternal separation; vasopressin
Entry Date(s):
Date Created: 20210423 Date Completed: 20220125 Latest Revision: 20220125
Update Code:
20240104
DOI:
10.1111/jne.12969
PMID:
33890333
Czasopismo naukowe
Axon initial segments (AIS) of dentate granule cells in the hippocampus exhibit prominent spines (AISS) during early development that are associated with microglial contacts. In the present study, we investigated whether developmental changes in AISS could be modified by early-life stress (ELS), specifically neonatal maternal separation (MS), through stress hormones and microglial activation and examined the potential behavioural consequences. We examined AISS at postnatal day (PND)5, 15 and 50, using Golgi-Cox staining and anatomical analysis. Neurone-microglial interaction was assessed using antibodies against ankyrin-G, PSD-95 and Iba1, for AIS, AISS and microglia visualisation, respectively, in normally reared and neonatal maternally separated male and female rats. We observed a higher density of AISS in ELS rats at both PND15 and PND50 compared to controls. Effects were more pronounced in females than males. AIS-associated microglia in ELS rats showed a hyper-ramified morphology and less co-localisation with PSD-95 compared to controls at PND15. ELS-associated alteration in microglial morphology and synaptic pruning was mimicked by treatment of acute hippocampal slices of normally reared rats with vasopressin. ELS rats exhibited increased freezing behaviour during auditory fear memory testing, which was more pronounced in female subjects and corresponded with increased Fos expression in dorsal and ventral dentate granule cells. Thus, microglial synaptic pruning in dentate AIS of hippocampus is influenced by ELS, with demonstrable sex bias regarding its anatomical characteristics and subsequent fear-induced defensive behaviours.
(© 2021 British Society for Neuroendocrinology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies