Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cytotoxicity, in vivo toxicity, and chemical composition of the hexane extract of Plectranthus amboinicus (Lour.) Spreng.

Tytuł:
Cytotoxicity, in vivo toxicity, and chemical composition of the hexane extract of Plectranthus amboinicus (Lour.) Spreng.
Autorzy:
Almalki A; National Center for Environmental Technology (NCET) King Abdulaziz City for Science and Technology (KACST), Life Sciences and Environment Research Institute (LSERI), Riyadh, 11442, Saudi Arabia.
Abutaha N; Department of Zoology College of Science, Bioproducts Research Chair King Saud University, Riyadh, 11451, Saudi Arabia. .
Al-Doaiss AA; Department of Biology College of Science, King Khalid University, Abha, Saudi Arabia.
Mohammed AZ; College of Science, Biology Department, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Wadaan MA; Department of Zoology College of Science, Bioproducts Research Chair King Saud University, Riyadh, 11451, Saudi Arabia.
Źródło:
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2021 Sep; Vol. 28 (35), pp. 48141-48153. Date of Electronic Publication: 2021 Apr 26.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
MeSH Terms:
Plectranthus*
Animals ; Apoptosis ; Hexanes ; Humans ; MCF-7 Cells ; Mice ; Plant Extracts/toxicity ; Plant Leaves
References:
Abutaha N, Al-zharani M, Al-Doaiss AA, Baabbad A, Al-malki AM, Dekhil H (2020) Anticancer, antioxidant, and acute toxicity studies of a Saudi polyherbal formulation, PHF5. Open Chem 18:472–481. (PMID: 10.1515/chem-2020-0047)
Annapurani S, Priya R (1999) Antimutagenic, antitumourogenic and antigenotoxic effects of polyphenol extracts of selected medicinal plants. Indian J Nutr Diet 36:431–435.
Arts JH, Muijser H, Appel MJ, Kuper CF, Bessems JG, Woutersen RA (2004) Subacute (28-day) toxicity of furfural in Fischer 344 rats: a comparison of the oral and inhalation route. Food Chem Toxicol 42:1389–1399. (PMID: 10.1016/j.fct.2004.03.014)
Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369. (PMID: 10.3390/molecules21040369)
Asiimwe S, Borg-Karlsson A-K, Azeem M, Mugisha KM, Namutebi A, Gakunga NJ (2014) Chemical composition and toxicological evaluation of the aqueous leaf extracts of Plectranthus amboinicus (Lour.) Spreng. Int J Pharm Sci Invent 3:19–27.
Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W (2016) SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett 12:2409–2416. (PMID: 10.3892/ol.2016.4988)
Baskar R, Lee KA, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199. (PMID: 10.7150/ijms.3635)
Bautista ARPL, Moreira E, Batista MS, Miranda M, Gomes I (2004) Subacute toxicity assessment of annatto in rat. Food Chem Toxicol 42:625–629. (PMID: 10.1016/j.fct.2003.11.007)
Benarba B, Pandiella A (2018) Colorectal cancer and medicinal plants: principle findings from recent studies. Biomed Pharmacother 107:408–423. (PMID: 10.1016/j.biopha.2018.08.006)
Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050.
Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801. (PMID: 10.1016/S1470-2045(12)70211-5)
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. (PMID: 10.3322/caac.21492)
Buznego MT, Perez-Saad H (1999) Antiepileptic effect of Plectranthus amboinicus (Lour.) Spreng.(french marjoram). Rev Neurol 29:388–389.
Chang S-T, Wang DS-Y, Wu C-L, Shiah S-G, Kuo Y-H, Chang C-J (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55:227–232. (PMID: 10.1016/S0031-9422(00)00275-2)
Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK (2008) Medicinal plants and cancer chemoprevention. Curr Drug Metab 9:581–591. (PMID: 10.2174/138920008785821657)
Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, Dilip De Silva E (2016) A study of the potential anticancer activity of Mangifera zeylanica bark: evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncol Lett 11:1335–1344. (PMID: 10.3892/ol.2016.4087)
Ferraz RP, Bomfim DS, Carvalho NC, Soares MB, da Silva TB, Machado WJ, Prata APN, Costa EV, Moraes VRS, Nogueira PCL (2013) Cytotoxic effect of leaf essential oil of Lippia gracilis Schauer (Verbenaceae). Phytomedicine 20:615–621. (PMID: 10.1016/j.phymed.2013.01.015)
Gurgel A, da Silva J, Grangeiro A, Oliveira DC, Lima CM, da Silva A, Souza I (2009) In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol 2:361–363. (PMID: 10.1016/j.jep.2009.07.006)
He K, Zeng L, Shi G, Zhao G-X, Kozlowski JF, McLaughlin JL (1997) Bioactive compounds from Taiwania cryptomerioides. J Nat Prod 60:38–40. (PMID: 10.1021/np960513c)
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776. (PMID: 10.1038/35037710)
Islam MT, Khalipha AB, Bagchi R, Mondal M, Smrity SZ, Uddin SJ, Shilpi JA, Rouf R (2019) Anticancer activity of thymol: a literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life 71:9–19. (PMID: 10.1002/iub.1935)
Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal 19:405–419. (PMID: 10.1016/j.jfca.2006.02.009)
Jaafari A, Mouse HA, Rakib EM, Tilaoui M, Benbakhta C, Boulli A, Zyad A (2007) Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. Rev Bras 17:477–491.
Jarrar Y, Al-Doaiss A, Alfaifi M, Shati A, Al-Kahtani M, Jarrar B (2020) The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. Environ Toxicol Pharmacol 80:103449. (PMID: 10.1016/j.etap.2020.103449)
Kang S-H, Kim Y-S, Kim E-K, Hwang J-W, Jeong J-H, Dong X, Lee J-W, Moon S-H, Jeon B-T, Park P-J (2016) Anticancer effect of thymol on AGS human gastric carcinoma cells. J Microbiol Biotechnol 26:28–37. (PMID: 10.4014/jmb.1506.06073)
Kerns SL, Ostrer H, Rosenstein BS (2014) Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov 4:155–165. (PMID: 10.1158/2159-8290.CD-13-0197)
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK (2020) Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10:47. (PMID: 10.3390/biom10010047)
Kim W, Park C, Park J, Cheong H, Kim S-J (2020) Pine needle hexane extract promote cell cycle arrest and premature senescence via p27 KIP1 upregulation gastric cancer cells. Food Sci Biotechnol 29:845–853. (PMID: 10.1007/s10068-019-00730-5)
Kumar S, Sharma VK, Yadav S, Dey S (2017) Antiproliferative and apoptotic effects of black turtle bean extracts on human breast cancer cell line through extrinsic and intrinsic pathway. Chem Cent J 11:1–10. (PMID: 10.1186/s13065-016-0232-6)
Legault J, Pichette A (2007) Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59:1643–1647. (PMID: 10.1211/jpp.59.12.0005)
Levitsky DO, Dembitsky VM (2015) Anti-breast cancer agents derived from plants. Nat Prod Bioprospect 5:1–16. (PMID: 10.1007/s13659-014-0048-9)
Loha M, Mulu A, Abay SM, Ergete W, Geleta B (2019) Acute and subacute toxicity of methanol extract of Syzygium guineense leaves on the histology of the liver and kidney and biochemical compositions of blood in rats. Evid Based Complement Alternat Med:2019 Mar 10;2019:5702159. https://doi.org/10.1155/2019/5702159 . PMID: 30956682; PMCID: PMC6431459.
Lowe S, Lin A (2000) Apoptosis in cancer. Carcinogenesis 21:485–495. (PMID: 10.1093/carcin/21.3.485)
Matovina C, Birkeland AC, Zick S, Shuman AG (2017) Integrative medicine in head and neck cancer. Otolaryngol Head Neck Surg 156:228–237. (PMID: 10.1177/0194599816671885)
Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1:101–116. (PMID: 10.1007/s13148-010-0011-5)
Motadi LR, Choene MS, Mthembu NN (2020) Anticancer properties of Tulbaghia violacea regulate the expression of p53-dependent mechanisms in cancer cell lines. Sci Rep 10:1–11. (PMID: 10.1038/s41598-020-69722-4)
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380. (PMID: 10.3389/fphar.2017.00380)
Nasr FA, Abutaha N, Al-Zahrani M, Farooq M, Wadaan MA (2018) Anticancer potential of plant extracts from Riyadh (saudi Arabia) on MDA-MB-231 breast cancer cells. Afr J Tradit Complement Altern Med 15:46–53. (PMID: 10.21010/ajtcam.v15i4.7)
No OT (2008) 407: repeated Dose 28-day oral toxicity study in rodents. OECD guidelines for the testing of chemicals, Section 4.
Patel RD, Mahobia NK, Singh MP, Singh A, Sheikh NW, Alam G, Singh SK (2010a) Antioxidant potential of leaves of Plectranthus amboinicus (Lour) Spreng. Pharm Lett 2:240–245.
Patel R, Mahobia N, Waseem N, Upwar N, Singh S (2010b) Phyto-physicochemical investigation of leaves of Plectranthus amboinicus (Lour) Spreng. Pharm J 2:536–542.
Pillai PG, Suresh P, Aggarwal G, Doshi G, Bhatia V (2011) Pharmacognostical standardization and toxicity profile of the methanolic leaf extract of Plectranthus amboinicus (Lour) Spreng. J Appl Pharm Sci 1:76.
Saleh KA, Albinhassan TH, Al-Ghazzawi AM, Mohaya A, Shati AA, Ayoub HJ, Abdallah QM (2020) Anticancer property of hexane extract of Suaeda fruticose plant leaves against different cancer cell lines. Trop J Pharm Res 19:129–136. (PMID: 10.4314/tjpr.v19i1.20)
Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J (2018) Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res 32:1688–1706. (PMID: 10.1002/ptr.6109)
Satyapal US, Kadam VJ, Ghosh R (2008) Hepatoprotective activity of livobond a polyherbal formulation against CCl4 induced hepatotoxicity in rats. Int J Pharmacol 4:472–476. (PMID: 10.3923/ijp.2008.472.476)
Shu L, Cheung K-L, Khor TO, Chen C, Kong A-N (2010) Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 29:483–502. (PMID: 10.1007/s10555-010-9239-y)
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang H-G, Reed JC, Nicholson DW, Alnemri ES (1999) Ordering the cytochrome c–initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. J Cell Biol 144:281–292. (PMID: 10.1083/jcb.144.2.281)
Sudhakar A (2009) History of cancer, ancient and modern treatment methods. J Cancer Ther 1:1.
Surh Y-J (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780. (PMID: 10.1038/nrc1189)
Thomas-Charles C, Fennell H (2019) Anti-prostate cancer activity of plant-derived bioactive compounds. Curr Mol Biol Rep 5:140–151. (PMID: 10.1007/s40610-019-00123-x)
Timmer J, Salvesen G (2007) Caspase substrates. Cell Death Differ 14:66–72. (PMID: 10.1038/sj.cdd.4402059)
Wang H, Oo Khor T, Shu L, Su Z-Y, Fuentes F, Lee J-H, Tony Kong A-N (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12:1281–1305. (PMID: 10.2174/187152012803833026)
Warrier P, Nambiar V, Ramankutty C (1996) Indian medicinal plants: a compendium of 500 species: Orient Longman Ltd. Chennai 3:38–90.
Widakowich C, de Castro JG, De Azambuja E, Dinh P, Awada A (2007) Side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455. (PMID: 10.1634/theoncologist.12-12-1443)
Yue Q, Gao G, Zou G, Yu H, Zheng X (2017) Natural products as adjunctive treatment for pancreatic cancer: recent trends and advancements. Biomed Res Int:2017;2017:8412508. https://doi.org/10.1155/2017/8412508 . Epub 2017 Jan 23. PMID: 28232946; PMCID: PMC5292383.
Zhou T, Li Y, Yang L, Liu L, Ju Y, Li C (2017) Silencing of ANXA3 expression by RNA interference inhibits the proliferation and invasion of breast cancer cells. Oncol Rep 37:388–398. (PMID: 10.3892/or.2016.5251)
Grant Information:
RG-1439 030 Deanship of Scientific Research, King Saud University
Contributed Indexing:
Keywords: Breast cancer; Caspase-3/7; Cell migration; Plectranthus amboinicus; Thymol, Apoptosis
Substance Nomenclature:
0 (Hexanes)
0 (Plant Extracts)
Entry Date(s):
Date Created: 20210426 Date Completed: 20210903 Latest Revision: 20210903
Update Code:
20240104
DOI:
10.1007/s11356-021-13796-8
PMID:
33899147
Czasopismo naukowe
Cancer is a universal health issue, and many anticancer therapeutic drugs have been isolated from natural products. This study analyzed the cytotoxic and apoptotic activity of Plectranthus amboinicus leaf hexane (PALH) extract in MDA-MB-231 (median inhibitory concentration [IC 50 ] = 39.26 μg/mL) and MCF7 (IC 50 = 89.05 μg/mL) breast cancer cell lines. Cells appeared rounded and shrunken, indicating morphological changes due to apoptosis induction. The primary constituent of PALH was phenol, 5-methyl-2-(1-methylethyl) (44%). PALH extract treatment increased the percentage of late apoptotic cells in the MDA-MB231 cell line (58% ± 1.5% at 200 μg/mL) compared to the control group, as evidenced by the activated caspase-3 and caspase-7 identified and captured by fluorescence microscopy. The relative migration rate in MDA-MB-231 cells treated with 10 μg/mL of PALH extract for 48 h was significantly lower compared to the control group. Analysis of acute (2000 mg/kg/BW) and subacute (250 and 500 mg/kg/BW) toxicity of PALH extract in mice showed no mortality or adverse effects in the kidney and liver histology compared to the control group. PALH extract can be considered nontoxic as it does not cause any adverse changes and so can be proposed as a potential breast anticancer agent.
(© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies