Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses.

Tytuł:
Lipopolysaccharide from biofilm-forming Pseudomonas aeruginosa PAO1 induces macrophage hyperinflammatory responses.
Autorzy:
Wang S; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
Xiang D; Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
Tian F; Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
Ni M; Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
Źródło:
Journal of medical microbiology [J Med Microbiol] 2021 Apr; Vol. 70 (4).
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2015- : London : Microbiology Society
Original Publication: 1968-1995: Edinburgh, Livingstone.
MeSH Terms:
Biofilms/*growth & development
Lipopolysaccharides/*pharmacology
Macrophages/*drug effects
Pseudomonas aeruginosa/*chemistry
Animals ; Blotting, Western ; Cytokines/analysis ; Enzyme-Linked Immunosorbent Assay ; Fluorescent Antibody Technique ; Humans ; Macrophages/pathology ; Mice ; Microscopy, Fluorescence ; Pseudomonas aeruginosa/physiology ; RAW 264.7 Cells ; RNA, Bacterial/genetics ; RNA, Bacterial/isolation & purification ; THP-1 Cells
References:
J Endotoxin Res. 2003;9(6):395-400. (PMID: 14733728)
PLoS One. 2018 Dec 20;13(12):e0208279. (PMID: 30571701)
Inflamm Res. 2019 May;68(5):397-413. (PMID: 30887082)
Nature. 2002 Apr 18;416(6882):695-6. (PMID: 11961541)
J Leukoc Biol. 2016 Nov;100(5):1047-1059. (PMID: 27538572)
Innate Immun. 2010 Oct;16(5):288-301. (PMID: 19710099)
J Immunol. 2008 Sep 15;181(6):3733-9. (PMID: 18768823)
F1000Prime Rep. 2014 Nov 04;6:97. (PMID: 25580251)
Pathog Dis. 2013 Apr;67(3):159-73. (PMID: 23620179)
Am J Respir Crit Care Med. 1995 Dec;152(6 Pt 1):2111-8. (PMID: 8520783)
Scand J Immunol. 2008 Feb;67(2):193-203. (PMID: 18086260)
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14978-83. (PMID: 19706447)
Comp Immunol Microbiol Infect Dis. 2006 Jan;29(1):12-26. (PMID: 16427697)
Nat Immunol. 2002 Apr;3(4):354-9. (PMID: 11912497)
Nat Immunol. 2004 Oct;5(10):971-4. (PMID: 15454919)
J Mol Biol. 2015 Nov 20;427(23):3628-45. (PMID: 26319792)
Clin Diagn Lab Immunol. 2004 Sep;11(5):819-24. (PMID: 15358638)
FEMS Immunol Med Microbiol. 2010 Aug;59(3):292-305. (PMID: 20579098)
Cell Mol Life Sci. 2010 Dec;67(24):4109-34. (PMID: 20680392)
Eur J Immunol. 2012 Dec;42(12):3126-35. (PMID: 23255009)
Nat Rev Immunol. 2003 Jan;3(1):23-35. (PMID: 12511873)
Nat Rev Immunol. 2008 Dec;8(12):958-69. (PMID: 19029990)
J Endotoxin Res. 2001;7(3):167-202. (PMID: 11581570)
Nature. 2014 Jul 3;511(7507):108-11. (PMID: 24990751)
Annu Rev Immunol. 2009;27:451-83. (PMID: 19105661)
Annu Rev Physiol. 2017 Feb 10;79:541-566. (PMID: 27813830)
Am J Respir Crit Care Med. 1999 Sep;160(3):961-7. (PMID: 10471625)
APMIS. 2017 Apr;125(4):320-338. (PMID: 28407429)
Nat Immunol. 2016 Jan;17(1):34-40. (PMID: 26681460)
Int Immunol. 2015 Mar;27(3):131-41. (PMID: 25267883)
J Clin Invest. 1987 Feb;79(2):319-26. (PMID: 3543052)
Infect Immun. 1999 Jun;67(6):2834-40. (PMID: 10338488)
Am J Respir Cell Mol Biol. 1995 Sep;13(3):257-61. (PMID: 7544594)
Nat Rev Immunol. 2014 Feb;14(2):81-93. (PMID: 24445666)
J Biosci. 2013 Mar;38(1):149-56. (PMID: 23385822)
Int J Med Microbiol. 2007 Sep;297(5):277-95. (PMID: 17466590)
Immunity. 2014 Feb 20;40(2):274-88. (PMID: 24530056)
Annu Rev Biochem. 2014;83:99-128. (PMID: 24580642)
Hum Vaccin Immunother. 2014;10(11):3270-85. (PMID: 25625930)
Science. 1999 Nov 19;286(5444):1561-5. (PMID: 10567263)
Immunol Res. 2015 Jun;62(2):137-45. (PMID: 25846584)
Nat Rev Immunol. 2004 Jul;4(7):499-511. (PMID: 15229469)
Exp Cell Res. 2019 Mar 15;376(2):124-132. (PMID: 30763585)
Nat Microbiol. 2017 Mar 06;2:17027. (PMID: 28263305)
J Leukoc Biol. 2012 Nov;92(5):977-85. (PMID: 22892106)
Mol Syst Biol. 2006;2:2006.0015. (PMID: 16738560)
J Leukoc Biol. 2004 Sep;76(3):509-13. (PMID: 15218057)
Exp Mol Med. 2013 Dec 06;45:e66. (PMID: 24310172)
Am J Respir Cell Mol Biol. 2009 Mar;40(3):295-304. (PMID: 18776130)
Annu Rev Microbiol. 2003;57:677-701. (PMID: 14527295)
Annu Rev Biochem. 2007;76:295-329. (PMID: 17362200)
J Oral Microbiol. 2014 Dec 17;6:26102. (PMID: 25523872)
Clin Exp Immunol. 2005 Dec;142(3):481-9. (PMID: 16297160)
Annu Rev Biochem. 2007;76:141-65. (PMID: 17362201)
FEMS Microbiol Rev. 2016 Jul;40(4):480-93. (PMID: 27075488)
J Leukoc Biol. 2003 Feb;73(2):209-12. (PMID: 12554797)
Contributed Indexing:
Keywords: Pseudomonas aeruginosa; biofilm; lipopolysaccharide; macrophages; polarization
Substance Nomenclature:
0 (Cytokines)
0 (Lipopolysaccharides)
0 (RNA, Bacterial)
Entry Date(s):
Date Created: 20210428 Date Completed: 20210504 Latest Revision: 20210722
Update Code:
20240104
PubMed Central ID:
PMC8289208
DOI:
10.1099/jmm.0.001352
PMID:
33909550
Czasopismo naukowe
Introduction. Macrophages polarization is essential in infection control. Llipopolysaccharide (LPS) plays an essential role in host innate immune system-pathogen interaction. The LPS structure of Pseudomonas aeruginosa modifies in the adaptation of this pathogen to biofilm-related chronic infection. Gap statement. There have been several studies on LPS induced polarization of human and mouse macrophages with different results. And it was reported that the lipid A structure of the LPS derived from biofilm-forming Pseudomonas aeruginosa strain PAO1 was modified. Aim. This study aimed to investigate the effect and the involved pathway of LPS from biofilm-forming PAO1 on human and murine macrophage polarization. Methodology. LPS was isolated from biofilm-forming and planktonic PAO1 and quantified. Then the LPS was added to PMA-differentiated human macrophage THP-1 cells and Raw264.7 murine macrophage cells. The expression of iNOS, Arg-1, IL4 , TNF-α, CCL3 , and CCL22 was analysed in the different cell lines. The expression of TICAM-1 and MyD88 in human THP-1 macrophages was quantified by Western blot. PAO1 infected macrophages at different polarization states, and the intracellular bacterial growth in macrophages was evaluated. Results. LPS from biofilm-forming PAO1 induced more marked hyperinflammatory responses in THP-1 and Raw264.7 macrophages than LPS derived from planktonic PAO1, and these responses were related to the up-regulation of MyD88. Intracellular growth of PAO1 was significantly increased in THP-1 macrophages polarized by LPS from biofilm-forming PAO1, but decreased both in THP-1 and Raw264.7 macrophages polarized by LPS from planktonic PAO1. Conclusion. The presented in vitro study indicates that LPS derived from biofilm-forming PAO1 induces enhanced M1 polarization in human and murine macrophage cell lines than LPS from planktonic PAO1.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies