Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prospective multicenter study on personalized and optimized MDCT contrast protocols: results on liver enhancement.

Tytuł:
Prospective multicenter study on personalized and optimized MDCT contrast protocols: results on liver enhancement.
Autorzy:
Zanca F; Palindromo Consulting, Willem de Corylaan, 51 3001, Leuven, Belgium. .
Brat HG; Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland.
Pujadas P; GE Healthcare, Buc, France.
Racine D; Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Dufour B; Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland.
Fournier D; Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland.
Rizk B; Centre d'Imagerie de Fribourg, Groupe 3R, Fribourg, Switzerland.
Źródło:
European radiology [Eur Radiol] 2021 Nov; Vol. 31 (11), pp. 8236-8245. Date of Electronic Publication: 2021 Apr 29.
Typ publikacji:
Journal Article; Multicenter Study
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1991-
MeSH Terms:
Contrast Media*
Iodine*
Humans ; Liver/diagnostic imaging ; Multicenter Studies as Topic ; Prospective Studies ; Tomography, X-Ray Computed
References:
Hollett MD, Jeffrey RB, Nino-Murcia M et al (1995) Dual-phase helical CT of the liver: value of arterial phase scans in the detection of small (< or = 1.5 cm) malignant hepatic neoplasms. AJR Am J Roentgenol 164(4):879–884. https://doi.org/10.2214/ajr.164.4.7726040. (PMID: 10.2214/ajr.164.4.77260407726040)
Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61. https://doi.org/10.1148/radiol.10090908. (PMID: 10.1148/radiol.1009090820574084)
Walgraeve M-S, Pyfferoen L, Van De Moortele K et al (2019) Implementation of patient-tailored contrast volumes based on body surface area and heart rate harmonizes contrast enhancement and reduces contrast load in small patients in portal venous phase abdominal CT. Eur J Radiol 121:108630. https://doi.org/10.1016/j.ejrad.2019.07.031. (PMID: 10.1016/j.ejrad.2019.07.03131587920)
Awai K, Kanematsu M, Kim T et al (2016) The optimal body size index with which to determine iodine dose for hepatic dynamic CT: a prospective multicenter study. Radiology. 278:773–781. https://doi.org/10.1148/radiol.2015142941. (PMID: 10.1148/radiol.201514294126356063)
Benbow M, Bull RK (2011) Simple weight-based contrast dosing for standardization of portal phase CT liver enhancement. Clin Radiol 66(10):940–944. https://doi.org/10.1016/j.crad.2010.12.022. (PMID: 10.1016/j.crad.2010.12.02221724182)
Botsikas D, Barnaure I, Terraz S et al (2016) Value of liver computed tomography with iodixanol 270, 80 kVp and iterative reconstruction. World J Radiol 8(7):693–699. https://doi.org/10.4329/wjr.v8.i7.693. (PMID: 10.4329/wjr.v8.i7.693275513394965353)
Caruso D, De Santis D, Rivosecchi F et al (2018) Lean body weight-tailored iodinated contrast injection in obese patient: Boer versus James formula. Biomed Res Int 2018:8521893. https://doi.org/10.1155/2018/8521893. (PMID: 10.1155/2018/8521893301868696110034)
Feng S-T, Zhu H, Peng Z et al (2017) An individually optimized protocol of contrast medium injection in enhanced CT scan for liver imaging. Contrast Media Mol Imaging 2017:7350429. https://doi.org/10.1155/2017/7350429. (PMID: 10.1155/2017/7350429290979355612702)
Fleischmann D, Kamaya A (2009) Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin North Am 47(1):13–26. https://doi.org/10.1016/j.rcl.2008.10.009. (PMID: 10.1016/j.rcl.2008.10.00919195531)
Goshima S, Kanematsu M, Noda Y et al (2016) Minimally required iodine dose for the detection of hypervascular hepatocellular carcinoma on 80-kVp CT. AJR Am J Roentgenol 206(3):518–525. https://doi.org/10.2214/AJR.15.15138. (PMID: 10.2214/AJR.15.1513826901007)
Ho LM, Nelson RC, DeLong DM (2007) Determining contrast medium dose and rate on basis of lean body weight: does this strategy improve patient-to-patient uniformity of hepatic enhancement during multi–detector row CT? Radiology. 243(2):431–437. https://doi.org/10.1148/radiol.2432060390. (PMID: 10.1148/radiol.243206039017456869)
Ichikawa T, Erturk SM, Araki T (2006) Multiphasic contrast-enhanced multidetector-row CT of liver: contrast-enhancement theory and practical scan protocol with a combination of fixed injection duration and patients’ body-weight-tailored dose of contrast material. Eur J Radiol 58(2):165–176. https://doi.org/10.1016/j.ejrad.2005.11.037. (PMID: 10.1016/j.ejrad.2005.11.03716417983)
Jo BG, Song YG, Shim SG, Kim YW (2016) Comparison of enhancement and image quality: different iodine concentrations for liver on 128-slice multidetector computed tomography in the same chronic liver disease patients. Korean J Intern Med 31(3):461–469. https://doi.org/10.3904/kjim.2014.210. (PMID: 10.3904/kjim.2014.21026701234)
Koiwahara G, Tsuda T, Matsuda M et al (2015) Different enhancement of the hepatic parenchyma in dynamic CT for patients with normal liver and chronic liver diseases and with the dose of contrast medium based on body surface area. Jpn J Radiol 33(4):194–200. https://doi.org/10.1007/s11604-015-0398-1. (PMID: 10.1007/s11604-015-0398-125673431)
Kondo H, Kanematsu M, Goshima S et al (2010) Body size indexes for optimizing iodine dose for aortic and hepatic enhancement at multidetector CT: comparison of total body weight, lean body weight, and blood volume. Radiology 254(1):163–169. https://doi.org/10.1148/radiol.09090369. (PMID: 10.1148/radiol.0909036920019137)
Masuda T, Nakaura T, Funama Y et al (2017) Aortic and hepatic contrast enhancement during hepatic-arterial and portal venous phase computed tomography scanning: multivariate linear regression analysis using age, sex, total body weight, height, and cardiac output. J Comput Assist Tomogr 41(2):309–314. https://doi.org/10.1097/RCT.0000000000000513. (PMID: 10.1097/RCT.000000000000051327759599)
Peet K, Clarke SE, Costa AF (2019) Hepatic enhancement differences when dosing iodinated contrast media according to total versus lean body weight. Acta Radiol 60(7):807–814. https://doi.org/10.1177/0284185118801137. (PMID: 10.1177/028418511880113730227724)
Zanardo M, Doniselli FM, Esseridou A et al (2018) Abdominal CT: a radiologist-driven adjustment of the dose of iodinated contrast agent approaches a calculation per lean body weight. Eur Radiol Exp 2(1):41. https://doi.org/10.1186/s41747-018-0074-1. (PMID: 10.1186/s41747-018-0074-1305156136279751)
Zhang X, Li S, Liu W et al (2016) Double-low protocol for hepatic dynamic CT scan: effect of low tube voltage and low-dose iodine contrast agent on image quality. Medicine (Baltimore) 95(26):e4004. https://doi.org/10.1097/MD.0000000000004004. (PMID: 10.1097/MD.0000000000004004)
Funama Y, Awai K, Nakayama Y et al (2005) Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low–tube voltage technique: phantom study. Radiology. 237(3):905–910. https://doi.org/10.1148/radiol.2373041643. (PMID: 10.1148/radiol.237304164316237139)
Hamer OW, Aguirre DA, Casola G et al (2006) Fatty liver: imaging patterns and pitfalls. Radiographics 26(6):1637–1653. https://doi.org/10.1148/rg.266065004. (PMID: 10.1148/rg.26606500417102041)
Gupta AA, Kim DC, Krinsky GA et al (2004) CT and MRI of cirrhosis and its mimics. AJR Am J Roentgenol 183(6):1595–1601. https://doi.org/10.2214/ajr.183.6.01831595. (PMID: 10.2214/ajr.183.6.0183159515547196)
Li S, Sun X, Chen M et al (2019) Liver fibrosis conventional and molecular imaging diagnosis update. J Liver 8(1):236. (PMID: 10.35248/2167-0889.19.8.236)
Bell H, Rostad B, Raknerud N, Try K (1994) Computer tomography in the detection of hemochromatosis. Tidsskr Nor Laegeforen 114:1697–1699. (PMID: 8079280)
Brat H, Zanca F, Montandon S et al (2019) Local clinical diagnostic reference levels for chest and abdomen CT examinations in adults as a function of body mass index and clinical indication: a prospective multicenter study. Eur Radiol 29(12):6794–6804. https://doi.org/10.1007/s00330-019-06257-x. (PMID: 10.1007/s00330-019-06257-x31144074)
Weininger M, Barraza JM, Kemper CA et al (2011) Cardiothoracic CT angiography: current contrast medium delivery strategies. AJR Am J Roentgenol 196(3):W260–WW72. https://doi.org/10.2214/AJR.10.5814. (PMID: 10.2214/AJR.10.581421343473)
Li C, Ford ES, Zhao G et al (2009) Estimates of body composition with dual-energy X-ray absorptiometry in adults. Am J Clin Nutr 90(6):1457–1465. https://doi.org/10.3945/ajcn.2009.28141. (PMID: 10.3945/ajcn.2009.2814119812179)
Kidoh M, Nakaura T, Oda S et al (2013) Contrast enhancement during hepatic computed tomography: effect of total body weight, height, body mass index, blood volume, lean body weight, and body surface area. J Comput Assist Tomogr 37(2):159–164. https://doi.org/10.1097/RCT.0b013e31827dbc08. (PMID: 10.1097/RCT.0b013e31827dbc0823493203)
Costa AF, Peet K, Abdolell M (2020) Dosing iodinated contrast media according to lean versus total body weight at abdominal CT: a stratified randomized controlled trial. Acad Radiol 27(6):833–840. https://doi.org/10.1016/j.acra.2019.07.014. (PMID: 10.1016/j.acra.2019.07.01431439467)
Rengo M, Bellini D, Businaro R et al (2017) MDCT of the liver in obese patients: evaluation of a different method to optimize iodine dose. Abdom Radiol (NY) 42(10):2420–2427. https://doi.org/10.1007/s00261-017-1156-x. (PMID: 10.1007/s00261-017-1156-x)
Kondo H, Kanematsu M, Goshima S et al (2011) Aortic and hepatic enhancement at multidetector CT: evaluation of optimal iodine dose determined by lean body weight. Eur J Radiol 80(3):e273–e277. https://doi.org/10.1016/j.ejrad.2010.12.009. (PMID: 10.1016/j.ejrad.2010.12.00921195572)
Kondo H, Kanematsu M, Goshima S et al (2013) Body size indices to determine iodine mass with contrast-enhanced multi-detector computed tomography of the upper abdomen: does body surface area outperform total body weight or lean body weight? Eur Radiol 23(7):1855–1861. https://doi.org/10.1007/s00330-013-2808-z. (PMID: 10.1007/s00330-013-2808-z23508277)
Matsumoto Y, Masuda T, Sato T et al (2019) Contrast material injection protocol with the dose determined according to lean body weight at hepatic dynamic computed tomography: comparison among patients with different body mass indices. J Comput Assist Tomogr 43(5):736–740. https://doi.org/10.1097/RCT.0000000000000909. (PMID: 10.1097/RCT.000000000000090931609293)
Nyman U (2016) James lean body weight formula is not appropriate for determining CT contrast media dose in patients with high body mass index. Radiology 278(3):956–957. https://doi.org/10.1148/radiol.2016152031. (PMID: 10.1148/radiol.201615203126885737)
Jensen B, Braun W, Geisler C et al (2019) Limitations of fat-free mass for the assessment of muscle mass in obesity. Obes Facts 12(3):307–315. https://doi.org/10.1159/000499607. (PMID: 10.1159/000499607311327776696776)
Contributed Indexing:
Keywords: Abdomen; Contrast media; Liver, body composition; Multidetector computed tomography
Substance Nomenclature:
0 (Contrast Media)
9679TC07X4 (Iodine)
Entry Date(s):
Date Created: 20210429 Date Completed: 20211020 Latest Revision: 20220531
Update Code:
20240104
DOI:
10.1007/s00330-021-07953-3
PMID:
33914115
Czasopismo naukowe
Objective: To determine a personalized and optimized contrast injection protocol for a uniform and optimal diagnostic level of liver parenchymal enhancement, in a large patient population enrolled in a multicenter study.
Methods: Six hundred ninety-two patients who underwent a standardized multi-phase liver CT examination were prospectively assigned to one contrast media (CM) protocol group: G1 (100 mL fixed volume, 37 gI); G2 (600 mgI/kg of total body weight (TBW)); G3 (750 mgI/kg of fat-free mass (FFM)), and G4 (600 mgI/kg of FFM). Change in liver parenchyma CT number between unenhanced and contrast-enhanced images was measured by two radiologists, on 3-mm pre-contrast and portal phase axial reconstructions. The enhancement histograms were compared across CM protocols, specifically according to a target diagnostic value of 50 HU. The total amount of iodine dose was also compared among protocols by median and interquartile range (IQR). The Kruskal-Wallis and Mann-Whitney U tests were used to assess significant differences (p < 0.005), as appropriate.
Results: A significant difference (p < 0.001) was found across the groups with liver enhancement decreasing from median over-enhanced values of 77.0 (G1), 71.3 (G2), and 65.1 (G3) to a target enhancement of 53.2 HU for G4. Enhancement IQR was progressively reduced from 26.5 HU (G1), 26.0 HU (G2), and 17.8 HU (G3) to 14.5 HU (G4). G4 showed a median iodine dose of 26.0 gI, significantly lower (p < 0.001) than G3 (33.9 gI), G2 (38.8 gI), and G1 (37 gI).
Conclusions: The 600 mgI/kg FFM-based protocol enabled a diagnostically optimized liver enhancement and improved patient-to-patient enhancement uniformity, while significantly reducing iodine load.
Key Points: • Consistent and clinically adequate liver enhancement is observed with personalized and optimized contrast injection protocol. • Fat-free mass is an appropriate body size parameter for correlation with liver parenchymal enhancement. • Diagnostic oncology follow-up liver CT examinations may be obtained using 600 mgI/kg of FFM.
(© 2021. European Society of Radiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies