Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Solid-phase optimisation for simultaneous determination of thirteen pharmaceuticals in Ethiopian water samples with HPLC-DAD detection: an initial assessment.

Tytuł:
Solid-phase optimisation for simultaneous determination of thirteen pharmaceuticals in Ethiopian water samples with HPLC-DAD detection: an initial assessment.
Autorzy:
Tegegne B; Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa.; Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.; Department of Chemistry, College of Natural Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Chandravanshi BS; Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
Zewge F; Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
Chimuka L; Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa. .
Źródło:
Environmental monitoring and assessment [Environ Monit Assess] 2021 Apr 29; Vol. 193 (5), pp. 310. Date of Electronic Publication: 2021 Apr 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
MeSH Terms:
Pharmaceutical Preparations*
Water Pollutants, Chemical*/analysis
Chromatography, High Pressure Liquid ; Environmental Monitoring ; Ethiopia ; Solid Phase Extraction ; Tandem Mass Spectrometry ; Water
References:
Abafe, O. A., Spath, J., Fick, J., Jansson, S., Buckley, C., Stark, A., Pietruschka, B., & Martincigh, B. S. (2018). LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. Chemosphere, 200, 660–670. https://doi.org/10.1016/j.chemosphere.2018.02.105. (PMID: 10.1016/j.chemosphere.2018.02.105)
Afonso-Olivares, C., Torres-Padrón, E., Sosa-Ferrera, Z., & Santana-Rodríguez, J. (2013). Assessment of the presence of pharmaceutical compounds in seawater samples from coastal area of Gran Canaria Island (Spain). Antibiotics, 2, 274–287. https://doi.org/10.3390/antibiotics2020274.
Agunbiade, F. O., & Moodley, B. (2014). Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit Assess, 186, 7273–7291. https://doi.org/10.1007/s10661-014-3926-z. (PMID: 10.1007/s10661-014-3926-z)
Agunbiade, F. O., Moodley B. (2016). Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem, 35, 36-46. https://doi.org/10.1002/etc.3144.
Ashfaq, M., Noor, N., Saif-Ur-Rehman, M., Sun, Q., Mustafa, G., Faizan, Nazar M., & Yu, C. (2017). Determination of commonly used pharmaceuticals in hospital waste of Pakistan and evaluation of their ecological risk assessment. CLEAN - Soil, Air, Water, 45, 1500392. https://doi.org/10.1002/clen.201500392. (PMID: 10.1002/clen.201500392)
Asimakopoulos A. G., Kannan P., Higgins S., Kannan K. (2017). Determination of 89 drugs and other micropollutants in unfiltered wastewater and freshwater by LC-MS/MS: an alternative sample preparation approach. Anal Bioanal Chem, 409, 6205-6225.  https://doi.org/1007/s00216-017-0561-x.
Aydin S., Emin Aydin M., Kiliç H., Ulvi, A. (2018). Occurrence and Ecotoxicological Risk Assessment of Analgesics in Wastewater. Environment and Ecology Research, 6, 413-422. https://doi.org/10.13189/eer.2018.060502.
Babic, S., Mutavdzic, Pavlovic D., Asperger, D., Perisa, M., Zrncic, M., Horvat, A. J., & Kastelan-Macan, M. (2010). Determination of multi-class pharmaceuticals in wastewater by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem, 398, 1185–94. https://doi.org/10.1007/s00216-010-4004-1. (PMID: 10.1007/s00216-010-4004-1)
Baranowska, I., & Kowalski, B. (2011). Using HPLC method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater. Polish J. of Environ. Stud, 20, 21–28.
Baranowska, I., & Kowalski, B. (2012). A rapid UHPLC method for the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater. Bull Environ Contam Toxicol, 89, 8–14. https://doi.org/10.1007/s00128-012-0634-7. (PMID: 10.1007/s00128-012-0634-7)
BendzPax´eus N.A., Ginn T.R., Logec F.J. , D. (2005). Occurrence and fate of pharmaceutically active compounds in the environment, a case study: H¨oje River in Sweden. J Hazard Mater, 122, 195–204. (PMID: 10.1016/j.jhazmat.2005.03.012)
Bertrand-Krajewski, J. L. (2018). Pharmaceuticals and detergents in hospital and urban wastewater: comparative monitoring, treatment, and assessment of impacts. Environ Sci Pollut Res Int, 25, 9195–9196. https://doi.org/10.1007/s11356-018-1445-0. (PMID: 10.1007/s11356-018-1445-0)
CunninghamL., Binks S.P., Olson M.J. , V. (2009). Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharmacol, 53, 39–45. https://doi.org/10.1016/j.yrtph.2008.10.006. (PMID: 10.1016/j.yrtph.2008.10.006)
Dasenaki, M. E., & Thomaidis, N. S. (2015). Multianalyte method for the determination of pharmaceuticals in wastewater samples using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem, 407, 4229–45. https://doi.org/10.1007/s00216-015-8654-x. (PMID: 10.1007/s00216-015-8654-x)
de Oliveira, J. A., Izeppi, L. J. P., Loose, R. F., Muenchen, D. K., Prestes, O. D., & Zanella, R. (2019). A multiclass method for the determination of pharmaceuticals in drinking water by solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 11, 2333–2340. https://doi.org/10.1039/C9AY00289H. (PMID: 10.1039/C9AY00289H)
Ebele, A. J., Oluseyi, T., Drage, D. S., Harrad, S., & Abou-Elwafa, Abdallah M. (2020). Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerging Contaminants, 6, 124–132. https://doi.org/10.1016/j.emcon.2020.02.004. (PMID: 10.1016/j.emcon.2020.02.004)
Faleye, A. C., Adegoke, A. A., Ramluckan, K., Fick, J., Bux, F., & Stenstrom, T. A. (2019). Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci Total Environ, 678, 10–20. https://doi.org/10.1016/j.scitotenv.2019.04.410. (PMID: 10.1016/j.scitotenv.2019.04.410)
Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ, 409, 3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053. (PMID: 10.1016/j.scitotenv.2011.05.053)
Gezahegn, T., Tegegne, B., Zewge, F., & Chandravanshi, B. S. (2019). Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector. BMC Chem, 13, 28. https://doi.org/10.1186/s13065-019-0543-5. (PMID: 10.1186/s13065-019-0543-5)
Gracia-Lor, E., Sancho, J. V., & Hernandez, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A, 1218, 2264–2275. https://doi.org/10.1016/j.chroma.2011.02.026. (PMID: 10.1016/j.chroma.2011.02.026)
Gure, A., Megersa, N., & Retta, N. (2014). Ion-pair assisted liquid–liquid extraction for selective separation and analysis of multiclass pesticide residues in environmental waters. Anal. Methods, 6, 4633–4642. https://doi.org/10.1039/c4ay00285g. (PMID: 10.1039/c4ay00285g)
Hernando, M. D., Mezcua, M., Fernandez-Alba, A. R., & Barcelo, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69, 334–42. https://doi.org/10.1016/j.talanta.2005.09.037. (PMID: 10.1016/j.talanta.2005.09.037)
Iglesias, A., Nebot C., Vázquez, B., Coronel-Olivares, C., Abuín, F., Cepeda, A. (2014). Monitoring the Presence of 13 Active Compounds in Surface Water Collected from Rural Areas in Northwestern Spain. Int. J. Environ. Res. Public Health, 11, 5251-5272. https://doi.org/10.3390/ijerph110505251.
K’Oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., & Demeestere, K. (2016). Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238–44. https://doi.org/10.1016/j.chemosphere.2016.01.095. (PMID: 10.1016/j.chemosphere.2016.01.095)
Kanama, K. M., Daso, A. P., Mpenyana-Monyatsi, L., & Coetzee, M. A. A. (2018). Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in north west province. South Africa. J Toxicol, 2018, 3751930. https://doi.org/10.1155/2018/3751930. (PMID: 10.1155/2018/3751930)
Kosma, C. I., Lambropoulou, D. A., Albanis, T. A. (2010). Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J Hazard Mater, 179, 804-817. https://doi.org/10.1016/j.jhazmat.2010.03.075.
Madikizela, L. M., & Chimuka, L. (2016). Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. Journal of Environmental Chemical Engineering, 4, 4029–4037. https://doi.org/10.1016/j.jece.2016.09.012. (PMID: 10.1016/j.jece.2016.09.012)
Madikizela, L. M., & Chimuka, L. (2017). Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water SA, 43, 264. https://doi.org/10.4314/wsa.v43i2.10. (PMID: 10.4314/wsa.v43i2.10)
Madikizela, L. M., Muthwa, S. F., & Chimuka, L. (2014). Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. South African journal of chemistry, 67, 143–150.
Madikizela, L. M., Ncube, S., & Chimuka, L. (2020). Analysis, occurrence and removal of pharmaceuticals in African water resources: a current status. J Environ Manage, 253, 109741. https://doi.org/10.1016/j.jenvman.2019.109741. (PMID: 10.1016/j.jenvman.2019.109741)
Madikizela, L. M., Tavengwa, N. T., & Chimuka, L. (2018). Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal, 147, 624–633. https://doi.org/10.1016/j.jpba.2017.04.010. (PMID: 10.1016/j.jpba.2017.04.010)
Madureira, T. V., Rocha, M. J., Cass, Q. B., & Tiritan, M. E. (2010). Development and optimization of a HPLC–DAD method for the determination of diverse pharmaceuticals in estuarine surface waters. J Chromatogr Sci, 48, 176–182. (PMID: 10.1093/chromsci/48.3.176)
Matongo, S., Birungi, G., Moodley, B., & Ndungu, P. (2015). Pharmaceutical residues in water and sediment of Msunduzi River, KwaZulu-Natal, South Africa. Chemosphere, 134, 133–140. https://doi.org/10.1016/j.chemosphere.2015.03.093. (PMID: 10.1016/j.chemosphere.2015.03.093)
Mbhele, Z. E., Ncube, S., & Madikizela, L. M. (2018). Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater. Environ Sci Pollut Res Int, 25, 36724–36735. https://doi.org/10.1007/s11356-018-3602-x. (PMID: 10.1007/s11356-018-3602-x)
Mutiyar, P. K., Mittal, A. M. (2014). Risk assessment of antibiotic residues in different water matrices in India: Key issues and challenges Environmental Science and Pollution Research 1–17.  https://doi.org/10.1007/s11356-014-2702-5.
Ngubane, N. P., Naicker, D. N., Ncubeb, S., Chimuka, L., & Madikizela, L. M. (2019). Determination of naproxen, diclofenac and ibuprofen in Umgeni estuary and seawater: a case of northern Durban in KwaZulu-Natal Province of South Africa. Regional Studies in Marine Science, 29, 1–7. https://doi.org/10.1016/j.rsma.2019.100675. (PMID: 10.1016/j.rsma.2019.100675)
Ngumba, E., Gachanja, A., & Tuhkanen, T. (2016). Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Sci Total Environ, 539, 206–213. https://doi.org/10.1016/j.scitotenv.2015.08.139. (PMID: 10.1016/j.scitotenv.2015.08.139)
Ngumba, E., Kosunen, P., Gachanja, A., & Tuhkanen, T. (2016). A multiresidue analytical method for trace level determination of antibiotics and antiretroviral drugs in wastewater and surface water using SPE-LC-MS/MS and matrix-matched standards. Analytical Methods, 8, 6720–6729. https://doi.org/10.1039/c6ay01695b. (PMID: 10.1039/c6ay01695b)
Okuda, T., Yamashita, N., Tanaka, H., Matsukawa, H., Tanabe, K. (2009). Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants. Environ Int, 35, 815-20. https://doi.org/10.1016/j.envint.2009.01.006.
Oliveira, T. S., Murphy, M., Mendola, N., Wong, V., Carlson, D., & Waring, L. (2015). Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci Total Environ, 518–519, 459–78. https://doi.org/10.1016/j.scitotenv.2015.02.104. (PMID: 10.1016/j.scitotenv.2015.02.104)
Padrón, E. T., Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. (2014). Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples. Molecules, 19, 10320–10349. (PMID: 10.3390/molecules190710320)
Pereira, A., Silva, L. J. G., Laranjeiro, C. S. M., Meisel, L. M., Lino, C. M., & Pena, A. (2017). Human pharmaceuticals in Portuguese rivers: the impact of water scarcity in the environmental risk. Sci Total Environ, 609, 1182–1191. https://doi.org/10.1016/j.scitotenv.2017.07.200. (PMID: 10.1016/j.scitotenv.2017.07.200)
Santos, L. H., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barcelo, D., & Montenegro, M. C. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ, 461(462), 302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077. (PMID: 10.1016/j.scitotenv.2013.04.077)
Sharifi, V., Abbasi, A., & Nosrati, A. (2016). Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology. Journal of Food And Drug Analysis, 24, 264–276. https://doi.org/10.1016/j.jfda.2015.10.004. (PMID: 10.1016/j.jfda.2015.10.004)
Souza, F. S., Da Silva, V. V., Rosin, C. K., Hainzenreder, L., Arenzon, A., Pizzolato, T., Jank, L., & Feris, L. A. (2018). Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes. J Environ Sci Health A Tox Hazard Subst Environ Eng, 53, 213–221. https://doi.org/10.1080/10934529.2017.1387013. (PMID: 10.1080/10934529.2017.1387013)
Tan, E. S. S., Ho, Y. B., Zakaria, M. P., Latif, P. A., & Saari, N. (2015). Simultaneous extraction and determination of pharmaceuticals and personal care products (PPCPs) in river water and sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. International Journal of Environmental Analytical Chemistry & Biodiversity, 95, 816–832. https://doi.org/10.1080/03067319.2015.1058929. (PMID: 10.1080/03067319.2015.1058929)
UNODC. (2009). Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in SeizedMaterials and Biological Specimens, United Nation New York. 1-67. https://www.unodc.org/documents/scientific/validation.pdf (15 September).
USEPA. (2008). Method 1668B Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS, Washington, DC. 1-128.
Varga, M., Dobor, J., Helenkár, A., Jurecska, L., Yao, J., & Záray, G. (2010). Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography–mass spectrometry. Microchemical Journal, 95, 353–358. https://doi.org/10.1016/j.microc.2010.02.010.
Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., Barcelo, D. (2012). Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ, 430, 109-18. https://doi.org/10.1016/j.scitotenv.2012.04.055.
Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., Zou, Y., & Chen, X. (2012). Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicol Environ Saf, 80, 208–15. https://doi.org/10.1016/j.ecoenv.2012.03.002. (PMID: 10.1016/j.ecoenv.2012.03.002)
Zunngu, S. S., Madikizela, L. M., Chimuka, L., & Mdluli, P. S. (2017). Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. Comptes Rendus Chimie, 20, 585–591. https://doi.org/10.1016/j.crci.2016.09.006.
Contributed Indexing:
Keywords: Ethiopia; HPLC-DAD; Pharmaceuticals; Solid-phase extraction; Water samples
Substance Nomenclature:
0 (Pharmaceutical Preparations)
0 (Water Pollutants, Chemical)
059QF0KO0R (Water)
Entry Date(s):
Date Created: 20210429 Date Completed: 20210503 Latest Revision: 20210503
Update Code:
20240104
DOI:
10.1007/s10661-021-08999-y
PMID:
33914171
Czasopismo naukowe
Pharmaceutical consumption is increasing worldwide as it is essential to treat and prevent health issues but they end up in the environment. However, in many African countries like Ethiopia, the status of these compounds in various environmental samples is not very well known. In this study, a simple method for the extraction and determination of thirteen pharmaceutical compounds of different therapeutic classes in water samples using solid-phase extraction and HPLC-DAD was developed. Different parameters affecting extraction were optimised and obtained as hydrophilic-lipophilic balance (HLB) extraction cartridge, water sample pH of 5, elution solvent of 2% formic acid in water with methanol (20:80%, v/v), a sample volume of 150 mL and addition of 0.5% w/v EDTA in the sample. The limits of detection and quantification of the optimised method were in the range of 0.1-0.8 µg/L and 0.2-2.6 µg/L, respectively. The relative recovery in the spiked environmental water sample was in the range of 70-117% except for amoxicillin and acetylsalicylic acid in influent wastewater. The precision for all ranged from 0.3 to 11%. The proposed method was successfully tested for the detection and quantification of different environmental water samples collected from Addis Ababa, Ethiopia. Trimethoprim, caffeine and albendazole concentrations of 7.8 (1.1), 3.2 (0.4) and 2.1 (0.1) µg/L were quantified in hospital wastewater, respectively. The concentration of norfloxacin was found to be below the limit of quantification in the same water. Trimethoprim and ciprofloxacin were also found in the sewage treatment plant influent sample at a concentration of 0.5 (0.02) and 0.3 (0.01) µg/L, respectively.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies