Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Genome-wide identification and transcriptional characterization of DNA methyltransferases conferring temperature-sensitive male sterility in wheat.

Tytuł:
Genome-wide identification and transcriptional characterization of DNA methyltransferases conferring temperature-sensitive male sterility in wheat.
Autorzy:
Li D; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Feng BE; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.; Shanxi Agricultural University, Taigu, 030800, China.
Liu YJ; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Gong J; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Tang YM; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Zhang LP; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Pang BS; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Sun RW; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Zhang FT; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Chen ZB; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Wang YB; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Chen XC; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
Wang AP; Shanxi Agricultural University, Taigu, 030800, China. .
Zhao CP; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. cp_.
Gao SQ; The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .
Źródło:
BMC genomics [BMC Genomics] 2021 Apr 29; Vol. 22 (1), pp. 310. Date of Electronic Publication: 2021 Apr 29.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2000-
MeSH Terms:
Infertility, Male*
Triticum*/genetics
Triticum*/metabolism
DNA ; DNA Methylation ; Gene Expression Regulation, Plant ; Humans ; Male ; Methyltransferases ; Plant Infertility/genetics ; Plant Proteins/genetics ; Plant Proteins/metabolism ; Temperature
References:
Biochemistry. 2013 Apr 23;52(16):2828-38. (PMID: 23528166)
Front Plant Sci. 2016 Feb 03;7:7. (PMID: 26870046)
Curr Biol. 2003 Dec 16;13(24):2212-7. (PMID: 14680640)
Plant J. 2020 Jan;101(1):188-203. (PMID: 31529551)
Funct Integr Genomics. 2016 Sep;16(5):513-28. (PMID: 27380018)
PLoS One. 2017 Jun 2;12(6):e0178643. (PMID: 28575027)
PLoS Genet. 2012;8(8):e1002844. (PMID: 22876192)
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. (PMID: 29722887)
Mol Biol Evol. 2005 Apr;22(4):1119-28. (PMID: 15689527)
Plant Cell Environ. 2011 Mar;34(3):389-405. (PMID: 21062315)
Plant J. 2012 Jul;71(1):85-98. (PMID: 22380881)
BMC Genomics. 2019 Oct 12;20(1):730. (PMID: 31606033)
Mob DNA. 2019 Jun 7;10:26. (PMID: 31182978)
Nat Rev Genet. 2014 Sep;15(9):613-24. (PMID: 25048170)
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12614-12619. (PMID: 29109252)
Plant Cell. 2006 May;18(5):1166-76. (PMID: 16582009)
Nat Commun. 2017 Oct 11;8(1):869. (PMID: 29021581)
Plant J. 2009 Oct;60(2):386-96. (PMID: 19519802)
Nat Rev Genet. 2010 Mar;11(3):204-20. (PMID: 20142834)
Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506. (PMID: 29784956)
Plant Cell Rep. 2020 Aug;39(8):983-996. (PMID: 32594202)
Nat Rev Genet. 2019 Jul;20(7):432. (PMID: 30894697)
Plant Physiol. 2014 Mar;164(3):1293-308. (PMID: 24481135)
Plant Physiol. 2015 Aug;168(4):1417-32. (PMID: 26145151)
PLoS Genet. 2014 Nov 20;10(11):e1004806. (PMID: 25411840)
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):483-92. (PMID: 21779025)
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10642-7. (PMID: 25002488)
Nat Rev Genet. 2014 Jun;15(6):394-408. (PMID: 24805120)
Front Plant Sci. 2017 Aug 08;8:1370. (PMID: 28848574)
Mol Plant. 2020 Aug 3;13(8):1194-1202. (PMID: 32585190)
Cell. 2012 Sep 28;151(1):167-80. (PMID: 23021223)
RNA Biol. 2017 Sep 2;14(9):1108-1123. (PMID: 27232191)
Cell. 2013 Mar 28;153(1):193-205. (PMID: 23540698)
J Exp Bot. 2020 Jun 22;71(12):3588-3602. (PMID: 32166321)
Nat Struct Mol Biol. 2014 Jan;21(1):64-72. (PMID: 24336224)
PLoS Genet. 2019 Dec 30;15(12):e1008492. (PMID: 31887137)
Genome Biol. 2017 May 1;18(1):65. (PMID: 28457232)
Nucleic Acids Res. 2000 Sep 1;28(17):3250-9. (PMID: 10954592)
J Exp Bot. 2015 Sep;66(19):5959-69. (PMID: 26116024)
BMC Genomics. 2015 Nov 18;16:976. (PMID: 26581444)
Cell. 2013 Jan 17;152(1-2):352-64. (PMID: 23313553)
Nature. 2008 Mar 13;452(7184):215-9. (PMID: 18278030)
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14487-92. (PMID: 14612572)
Genomics Inform. 2014 Sep;12(3):87-97. (PMID: 25317107)
Plant Mol Biol. 1999 Sep;41(2):269-78. (PMID: 10579493)
Curr Opin Plant Biol. 2017 Apr;36:22-28. (PMID: 28088028)
Gene. 2014 Oct 1;549(1):192-7. (PMID: 24875418)
Plant Cell Rep. 2014 Oct;33(10):1661-72. (PMID: 24950734)
J Biol Chem. 2018 Dec 14;293(50):19466-19475. (PMID: 30341171)
Science. 2018 Aug 17;361(6403):. (PMID: 30115783)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
J Agric Food Chem. 2020 Jul 1;68(26):7024-7031. (PMID: 32520546)
Planta. 2004 Jan;218(3):337-49. (PMID: 14513380)
Cell. 2007 Sep 7;130(5):851-62. (PMID: 17803908)
J Exp Bot. 2010 Apr;61(7):1959-68. (PMID: 20351019)
Biochim Biophys Acta. 2005 Jun 30;1729(2):118-25. (PMID: 15946751)
Curr Opin Genet Dev. 2005 Apr;15(2):191-9. (PMID: 15797202)
New Phytol. 2020 Jan;225(1):511-529. (PMID: 31418861)
Genet Mol Res. 2014 Jul 07;13(3):5159-72. (PMID: 25061741)
Science. 2006 Jan 20;311(5759):395-8. (PMID: 16424344)
Plants (Basel). 2019 May 20;8(5):. (PMID: 31137487)
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12580-12585. (PMID: 27791156)
Curr Biol. 2012 Oct 9;22(19):1825-30. (PMID: 22940470)
PeerJ. 2020 Jan 14;8:e8432. (PMID: 31976183)
Nat Genet. 2013 Jul;45(7):836-41. (PMID: 23708189)
Genome Res. 2013 Apr;23(4):628-37. (PMID: 23269663)
Nucleic Acids Res. 2002 Jan 1;30(1):325-7. (PMID: 11752327)
Front Plant Sci. 2018 Oct 04;9:1447. (PMID: 30349550)
Grant Information:
KJCX20170421 Financial support came from Beijing Academy of Agriculture and Forestry Sciences Program; KJCX20200205 Important Crops Genetically Modified New Germplasm Creation; 2020-22-109 Beijing Postdoctoral Research Foundation
Contributed Indexing:
Keywords: DNA methyltransferases; Stress response; Temperature-sensitive genic male sterility (TGMS); Transcript abundance; Triticum aestivum L.
Substance Nomenclature:
0 (Plant Proteins)
9007-49-2 (DNA)
EC 2.1.1.- (Methyltransferases)
Entry Date(s):
Date Created: 20210430 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240104
PubMed Central ID:
PMC8082647
DOI:
10.1186/s12864-021-07600-7
PMID:
33926387
Czasopismo naukowe
Background: DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported.
Results: In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A.
Conclusions: Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies