Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

mRNA Transfection of T-Lymphocytes by Electroporation.

Tytuł:
mRNA Transfection of T-Lymphocytes by Electroporation.
Autorzy:
Schwarze LI; Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .; German Center for Infection Research (DZIF), Hamburg, Germany. .
Fehse B; Research Department of Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .; German Center for Infection Research (DZIF), Hamburg, Germany. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2285, pp. 217-226.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Electroporation*
Transfection*
CD4-Positive T-Lymphocytes/*metabolism
RNA, Messenger/*metabolism
Animals ; CD4-Positive T-Lymphocytes/immunology ; Cells, Cultured ; Gene Knockout Techniques ; Humans ; RNA, Messenger/genetics ; Receptors, CCR5/genetics ; Receptors, CCR5/metabolism ; Research Design ; Transcription Activator-Like Effector Nucleases/genetics ; Transcription Activator-Like Effector Nucleases/metabolism ; Workflow
References:
Shi J, Ma Y, Zhu J et al (2018) A review on electroporation-based intracellular delivery. Molecules 23:3044. https://doi.org/10.3390/molecules23113044. (PMID: 10.3390/molecules231130446278265)
Wong T-K, Neumann E (1982) Electric field-mediated gene transfer. Biochem Biophys Res Commun 107:584–587. (PMID: 10.1016/0006-291X(82)91531-5)
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into electric fields. EMBO J 1:841–845. (PMID: 10.1002/j.1460-2075.1982.tb01257.x)
Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human κ immunoglobulin genes introduced into mouse pre-B-lymphocytes by electroporation. Proc Natl Acad Sci U S A 81:7161–7165. https://doi.org/10.1073/pnas.81.22.7161. (PMID: 10.1073/pnas.81.22.71616438633392097)
Tsong TY (1990) On electroporation of cell membranes and some. Relat Phenom 299:271–295.
Rosazza C, Meglic SH, Zumbusch A et al (2016) Gene Electrotransfer: a mechanistic perspective. Curr Gene Ther 16:98–129. (PMID: 10.2174/1566523216666160331130040)
Baum C, Forster P, Hegewisch-Becker S, Harbers K (1994) An optimized electroporation protocol applicable to a wide range of cell lines. BioTechniques 17:1058–1062. (PMID: 7873174)
Deora AA, Fernando D, Ryan S, Rodriguez-Boulan E (2008) Efficient electroporation of DNA and protein into confluent and differentiated epithelial cells in culture. Bone 23:1–7. https://doi.org/10.1038/jid.2014.371. (PMID: 10.1038/jid.2014.371)
Batista Napotnik T, Miklavčič D (2018) In vitro electroporation detection methods—an overview. Bioelectrochemistry 120:166–182. https://doi.org/10.1016/j.bioelechem.2017.12.005. (PMID: 10.1016/j.bioelechem.2017.12.00529289825)
Aksoy P, Aksoy BA, Czech E, Hammerbacher J (2018) Electroporation characteristics of human primary T cells bioRxiv 466243. https://doi.org/10.1101/466243.
Zhang Z, Qiu S, Zhang X, Chen W (2018) Optimized DNA electroporation for primary human T-cell engineering. BMC Biotechnol 18:1–9. https://doi.org/10.1186/s12896-018-0419-0. (PMID: 10.1186/s12896-018-0419-0)
Saulis G, Saule R (2012) Size of the pores created by an electric pulse: microsecond vs millisecond pulses. Biochim Biophys Acta Biomembr 1818:3032–3039. https://doi.org/10.1016/j.bbamem.2012.06.018. (PMID: 10.1016/j.bbamem.2012.06.018)
Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435. https://doi.org/10.1002/jcb.2400510407. (PMID: 10.1002/jcb.24005104078496245)
Zerbib D, Amalric F, Teissié J (1985) Electric field-mediated transformation: Isolation and characterization of a TK+ subclone. Biochem Biophys Res Commun 129:611–618. https://doi.org/10.1016/0006-291X(85)91935-7. (PMID: 10.1016/0006-291X(85)91935-72990461)
Biasco L, Baricordi C, Aiuti A (2012) Retroviral integrations in gene therapy trials. Mol Ther 20:709–716. https://doi.org/10.1038/mt.2011.289. (PMID: 10.1038/mt.2011.289222524533321603)
Cesana D, Sgualdino J, Rudilosso L et al (2012) Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. J Clin Invest 122:1667–1676. https://doi.org/10.1172/JCI62189. (PMID: 10.1172/JCI62189225230643336994)
Cesana D, Volpin M, Serina Secanechia YN, Montini E (2017) Safety and efficacy of retroviral and lentiviral vectors for gene therapy. In: Brunetti-Pierri N (ed) Safety and efficacy of gene-based therapeutics for inherited disorders. Springer International Publishing, Cham, pp 9–35. (PMID: 10.1007/978-3-319-53457-2_2)
Porteus M (2016) Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56:163–190. https://doi.org/10.1146/annurev-pharmtox-010814-124454. (PMID: 10.1146/annurev-pharmtox-010814-12445426566154)
Berdien B, Mock U, Atanackovic D, Fehse B (2014) TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T-lymphocytes by lentiviral gene transfer. Gene Ther 21:539–548. https://doi.org/10.1038/gt.2014.26. (PMID: 10.1038/gt.2014.2624670996)
Mock U, Machowicz R, Hauber I et al (2015) mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV coreceptor CCR5. Nucleic Acids Res 43:5560–5571. https://doi.org/10.1093/nar/gkv469. (PMID: 10.1093/nar/gkv469259643004477672)
Chicaybam L, Sodre AL, Curzio BA, Bonamino MH (2013) An efficient low-cost method for gene transfer to T-lymphocytes. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0060298. (PMID: 10.1371/journal.pone.0060298)
Mock U, Hauber I, Fehse B (2016) Digital PCR to assess gene-editing frequencies (GEF-dPCR) mediated by designer nucleases. Nat Protoc 11:598–615. https://doi.org/10.1038/nprot.2016.027. (PMID: 10.1038/nprot.2016.02726914317)
Contributed Indexing:
Keywords: CCR5-knockout; CD4+-T cells isolation; Electroporation; Gene editing; Gene therapy; mRNA transfection
Substance Nomenclature:
0 (CCR5 protein, human)
0 (RNA, Messenger)
0 (Receptors, CCR5)
EC 3.1.- (Transcription Activator-Like Effector Nucleases)
Entry Date(s):
Date Created: 20210430 Date Completed: 20210623 Latest Revision: 20210623
Update Code:
20240104
DOI:
10.1007/978-1-0716-1311-5_18
PMID:
33928556
Czasopismo naukowe
Electroporation enables the transfection of different cell types including microbial, plant, and animal cells with charged molecules, such as nuclear acids or proteins. During electroporation, an electrical field is applied to the cells leading to a transient permeabilization of the cell membrane allowing exogenous molecules to enter the cells. Here we report the electroporation of human primary CD4 + -T cells with in-vitro transcribed mRNA to facilitate gene editing (knockout) of the CC-chemokine receptor 5 (CCR5), the coreceptor of the human immunodeficiency virus 1 (HIV1) predominantly used during primary infection. Using such strategy of transient expression of a CCR5-specific Transcription-activator-like-effector nuclease (TALEN), we aim to protect helper T cells from de novo HIV infection.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies