Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO 2 : Computational Design, Scope, and Applications.

Tytuł:
Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO 2 : Computational Design, Scope, and Applications.
Autorzy:
Hayashi H; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.
Takano H; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.
Katsuyama H; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.
Harabuchi Y; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.; Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.
Maeda S; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.; Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.; Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 3050044, Japan.
Mita T; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.; JST, ERATO Maeda Artificial Intelligence in Chemical Reaction, Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 0600810, Japan.
Źródło:
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2021 Jul 12; Vol. 27 (39), pp. 10040-10047. Date of Electronic Publication: 2021 May 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH
MeSH Terms:
Amines*
Carbon Dioxide*
Hydrocarbons, Fluorinated
References:
For a review on fluorinated α-amino acids, see:.
J. Moschner, V. Stulberg, R. Fernandes, S. Huhmann, J. Leppkes, B. Koksch, Chem. Rev. 2019, 119, 10718-10801. Selected methods for the synthesis of α-monofluorinated α-amino acid derivatives;.
Y. Takeuchi, M. Nabetani, K. Takagi, T. Hagi, T. Koizumi, J. Chem. Soc., Perkin Trans. 1991, 1, 49-53;.
Y. Takeuchi, M. Kamezaki, K. Kirihara, G. Haufe, K. W. Laue, N. Shibata, Chem. Pharm. Bull. 1998, 46, 1062-1064;.
B. Mohar, D. Sterk, L. Ferron, D. Cahard, Tetrahedron Lett. 2005, 46, 5029-5031;.
P. D. Bailey, A. N. Boa, J. Clayson, Tetrahedron 2009, 65, 1724-1736;.
T. Ferrary, E. David, G. Milanole, T. Besset, P. Jubault, X. Pannecoucke, Org. Lett. 2013, 15, 5598-5601.
For selected reviews on fluorine in medicinal chemistry, see:.
S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330;.
W. K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369;.
J. Wang, M. Sánchez-Roselló, J. L. Acenña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-2506;.
E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359.
 .
J. D. Finkelstein, Eur. J. Pediatr. 1998, 157, S40-S44;.
M. F. Abdelmalek, S. O. Sanderson, P. Angulo, C. Soldevila-Pico, C. Liu, J. Peter, J. Keach, M. Cave, T. Chen, C. J. McClain, K. D. Lindor, Hepatology 2009, 50, 1818-1826.
F. Goursaud, M. Berchel, J. Guilbot, N. Legros, L. Lemiègre, J. Marcilloux, D. Plusquellec, T. Benvegnu, Green Chem. 2008, 10, 310-320.
 .
J. A. Young, R. D. Dresdner, J. Am. Chem. Soc. 1958, 80, 1889-1892;.
T. Abe, E. Hayashi, H. Baba, H. Fukaya, J. Fluorine Chem. 1990, 48, 257-279;.
T. Abe, E. Hayashi, H. Fukaya, H. Baba, J. Fluorine Chem. 1990, 50, 173-196;.
R. D. Chambers, J. Hutchinson, J. Fluorine Chem. 1998, 92, 45-52.
 .
W. M. Koppes, M. Chaykovsky, US5276171, 1994;.
M. V. R. Reddy, P. Venkatapuram, M. R. Mallireddigari, V. R. Pallela, S. C. Cosenza, K. A. Robell, B. Akula, B. S. Hoffman, E. P. Reddy, J. Med. Chem. 2011, 54, 6254-6276;.
M. Mamone, E. Morvan, T. Milcent, S. Ongeri, B. Crousse, J. Org. Chem. 2015, 80, 1964-1971;.
A. Gandioso, M. El Fakiri, A. Rovira, V. Marchán, RSC Adv. 2020, 10, 29829-29834.
For selected reviews on reactions using difluorocarbene, see:.
C. Ni, J. Hu, Synthesis 2014, 46, 842-863;.
K. Fuchibe, R. Takayama, T. Aono, J. Hu, T. Hidano, H. Sasagawa, M. Fujiwara, S. Miyazaki, R. Nadano, J. Ichikawa, Synthesis 2018, 50, 514-528;.
A. D. Dilman, V. V. Levin, Acc. Chem. Res. 2018, 51, 1272-1280.
 .
V. V. Levin, A. A. Zemtsov, M. I. Struchkova, A. D. Dilman, Org. Lett. 2013, 15, 917-919;.
A. A. Zemtsov, N. S. Kondratyev, V. V. Levin, M. I. Struchkova, A. D. Dilman, J. Org. Chem. 2014, 79, 818-822;.
A. V. Tsymbal, M. D. Kosobokov, V. V. Levin, M. I. Struchkova, A. D. Dilman, J. Org. Chem. 2014, 79, 7831-7835;.
M. D. Kosobokov, V. V. Levin, M. I. Struchkova, A. D. Dilman, Org. Lett. 2014, 16, 3784-3787;.
V. O. Smirnov, M. I. Struchkova, D. E. Arkhipov, A. A. Korlyukov, A. D. Dilman, J. Org. Chem. 2014, 79, 11819-11823;.
A. S. Maslov, V. O. Smirnov, M. I. Struchkova, D. E. Arkhipov, A. D. Dilman, Tetrahedron Lett. 2015, 56, 5048-5050;.
A. L. Trifonov, A. A. Zemtsov, V. V. Levin, M. I. Struchkova, A. D. Dilman, Org. Lett. 2016, 18, 3458-3461;.
S. S. Ashirbaev, V. V. Levin, M. I. Struchkova, A. D. Dilman, J. Fluorine Chem. 2016, 191, 143-148;.
A. L. Trifonov, V. V. Levin, M. I. Struchkova, A. D. Dilman, Org. Lett. 2017, 19, 5304-5307;.
V. Krishnamurti, C. Barrett, G. K. S. Prakash, Org. Lett. 2019, 21, 1526-1529;.
Q. Xie, Z. Zhu, C. Ni, J. Hu, Org. Lett. 2019, 21, 9138-9141;.
V. O. Smirnov, A. D. Volodin, A. A. Korlyukov, A. D. Dilman, Angew. Chem. Int. Ed. 2020, 59, 12428-12431;.
Angew. Chem. 2020, 132, 12528-12531;.
H. Liang, R. Liu, M. Zhou, Y. Fu, C. Ni, J. Hu, Org. Lett. 2020, 22, 7047-7051;.
J. Su, X. Ma, Z. Ou, Q. Song, ACS Cent. Sci. 2020, 6, 1819-1826;.
Y. Kim, J. Heo, D. Kim, S. Chang, S. Seo, Nat. Commun. 2020, 11, 4761.
T. Mita, Y. Harabuchi, S. Maeda, Chem. Sci. 2020, 11, 7569-7577.
 .
S. Maeda, K. Ohno, K. Morokuma, Phys. Chem. Chem. Phys. 2013, 15, 3683-3701;.
S. Maeda, Y. Harabuchi, M. Takagi, K. Saita, K. Suzuki, T. Ichino, Y. Sumiya, K. Sugiyama, Y. Ono, J. Comput. Chem. 2018, 39, 233-251;.
Y. Sumiya, S. Maeda, Chem. Lett. 2020, 49, 553-564.
For selected reviews on carboxylations with CO2, see:.
Y. Tsuji, T. Fujihara, Chem. Commun. 2012, 48, 9956-9964;.
L. Zhang, Z. Hou, Chem. Sci. 2013, 4, 3395-3403;.
M. Börjesson, T. Moragas, D. Gallego, R. Martin, ACS Catal. 2016, 6, 6739-6749;.
Z. Zhang, J.-H. Ye, D.-S. Wu, Y.-Q. Zhou, D.-G. Yu, Chem. Asian J. 2018, 13, 2292-2306;.
A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948-15982;.
Angew. Chem. 2018, 130, 16178-16214;.
T. Mita, Y. Sato, Chem. Asian J. 2019, 14, 2038-2047.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.
L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2013, 52, 12390-12394;.
Angew. Chem. 2013, 125, 12616-12620.
K. Oshiro, Y. Morimoto, H. Amii, Synthesis 2010, 2080-2084.
D. J. Raber, P. Gariano Jr., A. O. Brod, A. Gariano, W. C. Guida, A. R. Guida, M. D. Herbst, J. Org. Chem. 1979, 44, 1149-1154.
Deposition numbers 2051382 (3 b), 2051380 (2 n), 2051381 (2 s), 2057679 (7), and 2057677 (8) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
F. Barzagli, F. Mani, M. Peruzzini, Green Chem. 2011, 13, 1267-1274.
R. Hoffman, R. B. Woodward, Acc. Chem. Res. 1968, 1, 17-22.
Although we made great efforts to isolate pure 2 a from the crude mixture, n-tetrabutylammonium bromide could not be removed, and the mixture was therefore used in the subsequent reaction.
J. Jung, E. Kim, Y. You, E. J. Cho, Adv. Synth. Catal. 2014, 356, 2741-2748.
C. Yu, N. Iqbal, S. Park, E. J. Cho, Chem. Commun. 2014, 50, 12884-12887.
For a review on difluoromethylation under photoredox conditions, see: A. Lemos, C. Lemaire, A. Luxen, Adv. Synth. Catal. 2019, 361, 1500-1537.
J. T. M. Correia, V. A. Fernandes, B. T. Matsuo, J. A. C. Delgado, W. C. de Souza, M. Weber Paixão, Chem. Commun. 2020, 56, 503-514.
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363.
J. Thongpaen, R. Manguin, V. Dorcet, T. Vives, C. Duhayon, M. Mauduit, O. Baslé, Angew. Chem. Int. Ed. 2019, 58, 15244-15248;.
Angew. Chem. 2019, 131, 15388-15392.
 .
J. C. Garrison, W. J. Youngs, Chem. Rev. 2005, 105, 3978-4008;.
J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561-3598.
Grant Information:
JPMJER1903 Exploratory Research for Advanced Technology; 18K05096 Japan Society for the Promotion of Science; Sumitomo Foundation; Astellas Foundation for Research on Metabolic Disorders; Akiyama Life Science Foundation; Ube Foundation; Fugaku Trust for Medicinal Research; Uehara Memorial Foundation
Contributed Indexing:
Keywords: carbon dioxide fixation; difluorocarbene; difluoroglycine; fluorination; multicomponent reactions
Substance Nomenclature:
0 (Amines)
0 (Hydrocarbons, Fluorinated)
0 (difluorocarbene)
142M471B3J (Carbon Dioxide)
Entry Date(s):
Date Created: 20210430 Date Completed: 20210715 Latest Revision: 20210715
Update Code:
20240104
DOI:
10.1002/chem.202100812
PMID:
33929060
Czasopismo naukowe
A three-component reaction (3CR) for the synthesis of difluoroglycine derivatives has been achieved by using amines, difluorocarbene (generated in situ), and the abundant, inexpensive, and nontoxic C 1 source CO 2 . Various tert-amines and pyridine, (iso)quinoline, imidazole, thiazole, and pyrazole derivatives were incorporated, and the corresponding products were isolated in solid form without purification by column chromatography on silica gel. Detailed reaction profiles of the 3CR were obtained from computational analysis using DFT calculations, and the results critically suggest that simple ammonia is not applicable to this reaction. In addition, as strongly supported by computational predictions, a new reagent that can generate difluorocarbene at 0 °C without any additives was discovered. Finally, radical substitution reactions of the obtained difluoroglycine derivatives under photoredox conditions, as well as a synthetic application as an N-heterocyclic carbene ligand are shown.
(© 2021 Wiley-VCH GmbH.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies