Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

HOIL-1-catalysed, ester-linked ubiquitylation restricts IL-18 signaling in cytotoxic T cells but promotes TLR signalling in macrophages.

Tytuł:
HOIL-1-catalysed, ester-linked ubiquitylation restricts IL-18 signaling in cytotoxic T cells but promotes TLR signalling in macrophages.
Autorzy:
Petrova T; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK.
Zhang J; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK.
Nanda SK; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK.
Figueras-Vadillo C; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK.
Cohen P; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life sciences, University of Dundee, UK.
Źródło:
The FEBS journal [FEBS J] 2021 Oct; Vol. 288 (20), pp. 5909-5924. Date of Electronic Publication: 2021 May 06.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford, UK : Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies, c2005-
MeSH Terms:
Ubiquitination*
Esters/*chemistry
Interleukin-18/*metabolism
Macrophages/*immunology
T-Lymphocytes, Cytotoxic/*immunology
Toll-Like Receptors/*metabolism
Ubiquitin/*chemistry
Ubiquitin-Protein Ligases/*physiology
Animals ; Interleukin-1 Receptor-Associated Kinases/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Signal Transduction
References:
Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K & Iwai K (2006) A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 25, 4877-4887.
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW et al. (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596.
Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H & Iwai K (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471, 633-636.
Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J et al. (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471, 637-641.
Emmerich CH, Ordureau A, Strickson S, Arthur JS, Pedrioli PG, Komander D & Cohen P (2013) Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA 110, 15247-15252.
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S et al. (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11, 123-132.
Cohen P & Strickson S (2017) The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 24, 1153-1159.
Lopez-Pelaez M, Lamont DJ, Peggie M, Shpiro N, Gray NS & Cohen P (2014) Protein kinase IKKbeta-catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells. Proc Natl Acad Sci USA 111, 17432-17437.
Ren J, Chen X & Chen ZJ (2014) IKKbeta is an IRF5 kinase that instigates inflammation. Proc Natl Acad Sci USA 111, 17438-17443.
Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW et al. (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243-249.
Blackwell TS & Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17, 3-9.
Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E & Gay NJ (2009) An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284, 25404-25411.
Lin SC, Lo YC & Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890.
Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M et al. (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447.
Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N & Cohen P (2008) The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem J 409, 43-52.
Smith H, Peggie M, Campbell DG, Vandermoere F, Carrick E & Cohen P (2009) Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proc Natl Acad Sci USA 106, 4584-4590.
Schauvliege R, Janssens S & Beyaert R (2006) Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett 580, 4697-4702.
Strickson S, Emmerich CH, Goh ETH, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F et al. (2017) Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci USA 114, E3481-E3489.
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J & Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351.
Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D et al. (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098-1109.
Lo YC, Lin SC, Rospigliosi CC, Conze DB, Wu CJ, Ashwell JD, Eliezer D & Wu H (2009) Structural basis for recognition of diubiquitins by NEMO. Mol Cell 33, 602-615.
Hauenstein AV, Xu G, Kabaleeswaran V & Wu H (2017) Evidence for M1-linked polyubiquitin-mediated conformational change in NEMO. J Mol Biol 429, 3793-3800.
Zhang J, Clark K, Lawrence T, Peggie MW & Cohen P (2014) An unexpected twist to the activation of IKKbeta: TAK1 primes IKKbeta for activation by autophosphorylation. Biochem J 461, 531-537.
Zhang J, Macartney T, Peggie M & Cohen P (2017) Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J 474, 2235-2248.
Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R, Arthur JS & Cohen P (2011) Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med 208, 1215-1228.
Skaug B, Chen J, Du F, He J, Ma A & Chen ZJ (2011) Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 44, 559-571.
Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D et al. (2010) Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kappaB signaling. Mol Cell 40, 548-557.
Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K & Nureki O (2012) Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kappaB regulation. Embo J 31, 3856-3870.
Heyninck K, Kreike MM & Beyaert R (2003) Structure-function analysis of the A20-binding inhibitor of NF-kappa B activation, ABIN-1. FEBS Lett 536, 135-140.
Kelsall IR, Zhang J, Knebel A, Arthur JSC & Cohen P (2019) The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proc Natl Acad Sci USA 116, 13293-13298.
Fujita H, Tokunaga A, Shimizu S, Whiting AL, Aguilar-Alonso F, Takagi K, Walinda E, Sasaki Y, Shimokawa T, Mizushima T et al. (2018) Cooperative domain formation by homologous motifs in HOIL-1L and SHARPIN plays a crucial role in LUBAC stabilization. Cell Rep 23, 1192-1204.
Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L et al. (2018) LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112-117.
Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A et al. (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9, 153-165.
Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K & Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150.
Jorgensen I, Lopez JP, Laufer SA & Miao EA (2016) IL-1beta, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur J Immunol 46, 2761-2766.
Yasuda K, Nakanishi K & Tsutsui H (2019) Interleukin-18 in health and disease. Int J Mol Sci 20, 649.
Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG & Cohen P (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J 434, 93-104.
Regan J, Breitfelder S, Cirillo P, Gilmore T, Graham AG, Hickey E, Klaus B, Madwed J, Moriak M, Moss N et al. (2002) Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 45, 2994-3008.
Kuma Y, Sabio G, Bain J, Shpiro N, Marquez R & Cuenda A (2005) BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J Biol Chem 280, 19472-19479.
Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, Xie T, Marto JA, Kim N, Sim T et al. (2012) Discovery of potent and selective covalent inhibitors of JNK. Chem Biol 19, 140-154.
Waterfield M, Jin W, Reiley W, Zhang M & Sun SC (2004) IkappaB kinase is an essential component of the Tpl2 signaling pathway. Mol Cell Biol 24, 6040-6048.
Beinke S, Robinson MJ, Hugunin M & Ley SC (2004) Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol 24, 9658-9667.
Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D et al. (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312-1326.
Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G et al. (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318-324.
Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O & Akira S (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9, 684-691.
Pauls E, Nanda SK, Smith H, Toth R, Arthur JS & Cohen P (2013) Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J Immunol 191, 2717-2730.
Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW et al. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739-746.
Rousseau S, Papoutsopoulou M, Symons A, Cook D, Lucocq JM, Prescott AR, O'Garra A, Ley SC & Cohen P (2008) TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF alpha in LPS-stimulated macrophages. J Cell Sci 121, 149-154.
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C & Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Carvajal AR, Gomez Diaz C, Vogel A, Sonn- Segev A, Schodl K, Deszcz L, Orban-Nemeth Z, Sakamoto S, Mechtler K, Kukura P et al. (2020) The linear ubiquitin chain assembly complex LUBAC generates heterotypic ubiquitin chains. BioRxiv. [PREPRINT].
Phadke R, Hedberg-Oldfors C, Scalco RS, Lowe DM, Ashworth M, Novelli M, Vara R, Merwick A, Amer H, Sofat R et al. (2020) RBCK1-related disease: A rare multisystem disorder with polyglucosan storage, auto-inflammation, recurrent infections, skeletal, and cardiac myopathy-Four additional patients and a review of the current literature. J Inherit Metab Dis 43, 1002-1013.
MacDuff DA, Reese TA, Kimmey JM, Weiss LA, Song C, Zhang X, Kambal A, Duan E, Carrero JA, Boisson B et al. (2015) Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection. Elife 4, e04494.
Emmerich CH, Bakshi S, Kelsall IR, Ortiz-Guerrero J, Shpiro N & Cohen P (2016) Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun 474, 452-461.
Windheim M, Stafford M, Peggie M & Cohen P (2008) Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 28, 1783-1791.
Cohen ES, Scott IC, Majithiya JB, Rapley L, Kemp BP, England E, Rees DG, Overed-Sayer CL, Woods J, Bond NJ et al. (2015) Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat Commun 6, 8327.
Grant Information:
MR/R021406/1 United Kingdom MRC_ Medical Research Council; 209380/Z/17/Z United Kingdom WT_ Wellcome Trust
Contributed Indexing:
Keywords: HOIL-1; T cell; macrophage; myddosome; ubiquitylation
Substance Nomenclature:
0 (Esters)
0 (Interleukin-18)
0 (Toll-Like Receptors)
0 (Ubiquitin)
EC 2.3.2.27 (Rbck1 protein, mouse)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
EC 2.7.11.1 (Interleukin-1 Receptor-Associated Kinases)
Entry Date(s):
Date Created: 20210501 Date Completed: 20211112 Latest Revision: 20211116
Update Code:
20240105
DOI:
10.1111/febs.15896
PMID:
33932090
Czasopismo naukowe
The atypical E3 ligase HOIL-1 forms ester bonds between ubiquitin and serine/threonine residues in proteins, but the physiological roles of this unusual modification are unknown. We now report that IL-18 signalling leading to the production of interferon γ (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is enhanced in cytotoxic T cells from knock-in mice expressing the E3 ligase-inactive HOIL-1[C458S] mutant, demonstrating that the formation of HOIL-1-catalysed ester-linked ubiquitin bonds restricts the activation of this pathway. We show that the interaction of IRAK2 with TRAF6 is required for IL-18-stimulated IFN-γ and GM-CSF production, and that the increased production of these cytokines in cytotoxic T cells from HOIL-1[C458S] mice correlates with an increase in both the number and size of the Lys63/Met1-linked hybrid ubiquitin chains attached to IRAK2 in these cells. In contrast, the secretion of IL-12 and IL-6 and the formation of il-12 and il-6 mRNA induced in bone marrow-derived macrophages (BMDMs) by prolonged stimulation with TLR-activating ligands that signal via myddosomes, which also requires the interaction of IRAK2 with TRAF6, were not increased but modestly reduced in HOIL-1[C458S] BMDM. The decreased production of these cytokines correlated with reduced ubiquitylation of IRAK2. Our results establish that changes in HOIL-1-catalysed ester-linked ubiquitylation can promote or reduce cytokine production depending on the ligand, receptor and immune cell and may be explained by differences in the ubiquitylation of IRAK2.
(© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)
Comment in: FEBS J. 2021 Oct;288(20):5903-5908. (PMID: 34322999)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies