Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Removal and transformation of sulfamethoxazole in acclimated biofilters with various operation modes - Implications for full-scale application.

Tytuł:
Removal and transformation of sulfamethoxazole in acclimated biofilters with various operation modes - Implications for full-scale application.
Autorzy:
Sochacki A; Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Ecology, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland. Electronic address: .
Kowalska K; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
Felis E; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
Bajkacz S; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland; Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland.
Kalka J; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland.
Brzeszkiewicz A; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, ul. Akademicka 2, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, ul. B. Krzywoustego 8, 44-100, Gliwice, Poland.
Vaňková Z; Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Environmental Geosciences, Kamýcká 129, 165 21, Praha 6 Suchdol, Czech Republic.
Jakóbik-Kolon A; Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. M. Strzody 7, 44-100, Gliwice, Poland.
Źródło:
Chemosphere [Chemosphere] 2021 Oct; Vol. 280, pp. 130638. Date of Electronic Publication: 2021 Apr 22.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Oxford : Elsevier Science Ltd
Original Publication: Oxford, New York, : Pergamon Press.
MeSH Terms:
Sulfamethoxazole*
Water Pollutants, Chemical*
Acclimatization ; Chromatography, Liquid ; Tandem Mass Spectrometry
Contributed Indexing:
Keywords: Aeration; Biofilters; Ecotoxicity; Manganese oxides; Sulfamethoxazole; Transformation products
Substance Nomenclature:
0 (Water Pollutants, Chemical)
JE42381TNV (Sulfamethoxazole)
Entry Date(s):
Date Created: 20210501 Date Completed: 20210623 Latest Revision: 20210623
Update Code:
20240105
DOI:
10.1016/j.chemosphere.2021.130638
PMID:
33932905
Czasopismo naukowe
The knowledge gaps regarding the degradation of sulfamethoxazole (SMX) in biofilters include the effect of aeration, constant feeding with readily biodegradable organic carbon and the presence of reactive media such as manganese oxides (MnOx). Thus, the goal of this study was to assess the removal of SMX in lab-scale biofilters with various operation variables: aeration, presence of MnOx as an amendment of filtering medium and the presence of readily biodegradable organic carbon (acetate). The sand used in the experiment as a filtering medium was previously exposed to the presence of SMX and acetate, which provided acclimation of the biomass. The removal of SMX was complete (>99%) with the exception of the unaerated columns fed with the influent containing acetate, due to apparent slower rate of SMX degradation. The obtained results suggest that bacteria were able to degrade SMX as a primary substrate and the degradation of this compound was subsequent to the depletion of acetate. The LC-MS/MS analysis of the effluents indicated several biotransformation reactions for SMX: (di)hydroxylation, acetylation, nitrosation, deamonification, S-N bond cleavage and isoxazole-ring cleavage. The relative abundance of transformation products was decreased in the presence of MnOx or acetate. Based on the Microtox assay, only the effluents from the unaerated columns filled with MnOx were classified as non-toxic. The results offer important implications for the design of biofilters for the elimination of SMX, namely that biofilters offer the greatest performance when fed with secondary wastewater and operated as non-aerated systems with a filtering medium containing MnOx.
(Copyright © 2021 Elsevier Ltd. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies