Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Cortical spectral matching and shape and volume analysis of the fetal brain pre- and post-fetal surgery for spina bifida: a retrospective study.

Tytuł :
Cortical spectral matching and shape and volume analysis of the fetal brain pre- and post-fetal surgery for spina bifida: a retrospective study.
Autorzy :
Mufti N; Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK. .; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK. .
Aertsen M; Department of Radiology, University Hospitals Katholieke Universiteit (KU), Leuven, Belgium.
Ebner M; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.; Medical Physics and Biomedical Engineering, University College London, London, UK.
Fidon L; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
Patel P; Radiology Department, Great Ormond Street Hospital for Children, London, UK.
Rahman MBA; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
Brackenier Y; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
Ekart G; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
Fernandez V; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.
Vercauteren T; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.; Medical Physics and Biomedical Engineering, University College London, London, UK.
Ourselin S; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.; Medical Physics and Biomedical Engineering, University College London, London, UK.
Thomson D; Paediatric Neurosurgery Department, Great Ormond Street Hospital for Children, London, UK.
De Catte L; Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.; Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.
Demaerel P; Department of Radiology, University Hospitals Katholieke Universiteit (KU), Leuven, Belgium.
Deprest J; Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK.; Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.; Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.
David AL; Elizabeth Garrett Anderson Institute for Women's Health, University College London, 1st Floor Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK.; Department of Obstetrics and Gynaecology, University Hospitals, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.; Cluster 'Women and Child', Dept. Development and Regeneration, Biomedical Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.
Melbourne A; School of Biomedical Engineering & Imaging Sciences (BMEIS), King's College London, London, UK.; Medical Physics and Biomedical Engineering, University College London, London, UK.
Pokaż więcej
Źródło :
Neuroradiology [Neuroradiology] 2021 May 01. Date of Electronic Publication: 2021 May 01.
Publication Model :
Ahead of Print
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin, New York, Springer-Verlag.
References :
Rethmann C, Scheer I, Meuli M, Mazzone L, Moehrlen U, Kellenberger CJ (2017) Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI. Eur Radiol 27(11):4571–4580. https://doi.org/10.1007/s00330-017-4807-y.
Zarutskie A, Guimaraes C, Yepez M, Torres P, Shetty A, Sangi-Haghpeykar H, Lee W, Espinoza J, Shamshirsaz AA, Nassr A, Belfort MA, Whitehead WE, Sanz Cortes M (2019) Prenatal brain imaging for predicting need for postnatal hydrocephalus treatment in fetuses that had neural tube defect repair in utero. Ultrasound Obstet Gynecol 53(3):324–334. https://doi.org/10.1002/uog.20212.
Wills KE, Holmbeck GN, Dillon K, McLone DG (1990) Intelligence and achievement in children with myelomeningocele. J Pediatr Psychol 15(2):161–176. https://doi.org/10.1093/jpepsy/15.2.161.
Geerdink N, van der Vliet T, Rotteveel JJ, Feuth T, Roeleveld N, Mullaart RA (2012) Essential features of Chiari II malformation in MR imaging: an interobserver reliability study–part 1. Childs Nerv Syst 28(7):977–985. https://doi.org/10.1007/s00381-012-1761-5.
Geerdink N, van der Vliet T, Rotteveel JJ, Feuth T, Roeleveld N, Mullaart RA (2012) Interobserver reliability and diagnostic performance of Chiari II malformation measures in MR imaging–part 2. Childs Nerv Syst 28(7):987–995. https://doi.org/10.1007/s00381-012-1763-3.
Adzick NST, E.A., Spong, C. Y., Brock III, J. W., Burrows, P. K., Johnson, M. P., Howell, R. N., Farrell, J. N., Dabrowiak, M.E., Sutton, L.N., Gupta, N., Tulipan, N.B., D’Alton, M.E., Farmer, D.L. (2011) A randomised trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004.
Sutton LNA, N. S., Bilaniuk L. T., Johnson, M. P., Cromblehome, T. M., Flake, A. W. (1999) Improvement in hinbrain herniation demonstrate by serial fetal magnetic imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831.
Juranek J, Fletcher JM, Hasan KM, Breier JI, Cirino PT, Pazo-Alvarez P, Diaz JD, Ewing-Cobbs L, Dennis M, Papanicolaou AC (2008) Neocortical reorganization in spina bifida. Neuroimage 40(4):1516–1522. https://doi.org/10.1016/j.neuroimage.2008.01.043.
Treble A, Juranek J, Stuebing KK, Dennis M, Fletcher JM (2013) Functional significance of atypical cortical organization in spina bifida myelomeningocele: relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cereb Cortex 23(10):2357–2369. https://doi.org/10.1093/cercor/bhs226.
Juranek J, Salman MS (2010) Anomalous development of brain structure and function in spina bifida myelomeningocele. Dev Disabil Res Rev 16(1):23–30. https://doi.org/10.1002/ddrr.88.
Hasan KM, Eluvathingal TJ, Kramer LA, Ewing-Cobbs L, Dennis M, Fletcher JM (2008) White matter microstructural abnormalities in children with spina bifida myelomeningocele and hydrocephalus: a diffusion tensor tractography study of the association pathways. J Magn Reson Imaging 27(4):700–709. https://doi.org/10.1002/jmri.21297.
Mignone Philpott C, Shannon P, Chitayat D, Ryan G, Raybaud CA, Blaser SI (2013) Diffusion-weighted imaging of the cerebellum in the fetus with Chiari II malformation. AJNR Am J Neuroradiol 34(8):1656–1660. https://doi.org/10.3174/ajnr.A3468.
Woitek R, Prayer D, Weber M, Amann G, Seidl R, Bettelheim D, Schopf V, Brugger PC, Furtner J, Asenbaum U, Kasprian G (2016) Fetal diffusion tensor quantification of brainstem pathology in Chiari II malformation. Eur Radiol 26(5):1274–1283. https://doi.org/10.1007/s00330-015-3939-1.
Johnson MP, Gerdes M, Rintoul N, Pasquariello P, Melchionni J, Sutton LN, Adzick NS (2006) Maternal-fetal surgery for myelomeningocele: neurodevelopmental outcomes at 2 years of age. Am J Obstet Gynecol 194 (4):1145–1150; discussion 1150–1142. https://doi.org/10.1016/j.ajog.2006.01.072.
Nagaraj UD, Peiro JL, Bierbrauer KS, Kline-Fath BM (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37(4):720–725. https://doi.org/10.3174/ajnr.A4585.
Doel T, Shakir DI, Pratt R, Aertsen M, Moggridge J, Bellon E, David AL, Deprest J, Vercauteren T, Ourselin S (2017) GIFT-Cloud: a data sharing and collaboration platform for medical imaging research. Comput Methods Programs Biomed 139:181–190. https://doi.org/10.1016/j.cmpb.2016.11.004.
Sacco A, Ushakov F, Thompson D, Peebles D, Pandya P, De Coppi P, Wimalasundera R, Attilakos G, David AL, Deprest J (2019) Fetal surgery for open spina bifida. Obstet Gynaecol 21(4):271–282. https://doi.org/10.1111/tog.12603.
Ebner M, Wang G, Li W, Aertsen M, Patel PA, Aughwane R, Melbourne A, Doel T, Dymarkowski S, De Coppi P, David AL, Deprest J, Ourselin S, Vercauteren T (2019) An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage. https://doi.org/10.1016/j.neuroimage.2019.116324.
Gholipour A, Rollins CK, Velasco-Annis C, Ouaalam A, Akhondi-Asl A, Afacan O, Ortinau CM, Clancy S, Limperopoulos C, Yang E, Estroff JA, Warfield SK (2017) A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 7(1):476. https://doi.org/10.1038/s41598-017-00525-w.
Orasanu E, Melbourne A, Cardoso MJ, Lomabert H, Kendall GS, Robertson NJ, Marlow N, Ourselin S (2016) Cortical folding of the preterm brain: a longitudinal analysis of extremely preterm born neonates using spectral matching. Brain Behav 6(8):e00488. https://doi.org/10.1002/brb3.488.
Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, Gousias IS, Boardman JP, Rutherford MA, Edwards AD, Hajnal JV, Rueckert D (2011) A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54(4):2750–2763. https://doi.org/10.1016/j.neuroimage.2010.10.019.
Fidon L, Ourselin, S., Vercauteren, T. (2020) Hardness weighted sampling for distributionally robust deep learning. Under double blind review as a conference paper at ICLR 2020.
Barkovich AJN, D. (1989) Abscence of the septum pellucidum: a useful sign in the diagnosis of congenital brain malformations. Am J Neuroradiol 152:353–360.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015.
Orasanu E, Melbourne A, Cardoso MJ, Lombaert H, Kendall GS, Robertson NJ, Marlow N, Ourselin S (2016) Erratum: cortical folding of the preterm brain: a longitudinal analysis of extremely preterm born neonates using spectral matching. Brain Behav 6(9):e00585. https://doi.org/10.1002/brb3.585.
Lomabert H, Spopring J, Siddiqi K (2013) Diffeomorphic spectral matching of cortical surafaces. Inf Process Med Imaging 7917:376–289.
Calignano F, Vezzetti E (2011) A morphological methodology for three-dimensional human face soft-tissue landmarks extraction: a preliminary study. Aesthetic Plast Surg 35(3):289–302. https://doi.org/10.1007/s00266-010-9579-6.
Aertsen M, Verduyckt J, De Keyzer F, Vercauteren T, Van Calenbergh F, De Catte L, Dymarkowski S, Demaerel P, Deprest J (2019) Reliability of MR imaging-based posterior fossa and brain stem measurements in open spinal dysraphism in the era of fetal surgery. AJNR Am J Neuroradiol 40(1):191–198. https://doi.org/10.3174/ajnr.A5930.
Garel C (2005) Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol 15(4):809–813. https://doi.org/10.1007/s00330-004-2610-z.
D’addario VP, V., Del Bianco, A., Di Naro, E., Tartagni, G., Miniello, G., Serio, G. (2001) The clivus–supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation. Ultrasound Obstet Gynecol 18:146–149.
Woitek R, Dvorak A, Weber M, Seidl R, Bettelheim D, Schopf V, Amann G, Brugger PC, Furtner J, Asenbaum U, Prayer D, Kasprian G (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS ONE 9(11):e112585. https://doi.org/10.1371/journal.pone.0112585.
Moore D, Notz, W.I.; Flinger, M.A. (2012) The basic practice of statistics. 6th Edition edn.,.
Andescavage NN, du Plessis A, McCarter R, Serag A, Evangelou I, Vezina G, Robertson R, Limperopoulos C (2017) Complex trajectories of brain development in the healthy human fetus. Cereb Cortex 27(11):5274–5283. https://doi.org/10.1093/cercor/bhw306.
Xu F, Ge X, Shi Y, Zhang Z, Tang Y, Lin X, Teng G, Zang F, Gao N, Liu H, Toga AW, Liu S (2020) Morphometric development of the human fetal cerebellum during the early second trimester. Neuroimage 207:116372. https://doi.org/10.1016/j.neuroimage.2019.116372.
Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Ha-Vinh Leuchter R, Sizonenko SV, Warfield SK, Mangin JF, Huppi PS (2008) Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131(Pt 8):2028–2041. https://doi.org/10.1093/brain/awn137.
Jokhi RP, Whitby EH (2011) Magnetic resonance imaging of the fetus. Dev Med Child Neurol 53(1):18–28. https://doi.org/10.1111/j.1469-8749.2010.03813.x.
Juranek J, Dennis M, Cirino PT, El-Messidi L, Fletcher JM (2010) The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. Cerebellum 9(2):240–248. https://doi.org/10.1007/s12311-010-0157-x.
Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16(1):16–22. https://doi.org/10.1002/ddrr.94.
Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1(1):86–93. https://doi.org/10.1002/ana.410010109.
Studholme C, Kroenke CD, Dighe M (2020) Motion corrected MRI differentiates male and female human brain growth trajectories from mid-gestation. Nat Commun 11(1):3038. https://doi.org/10.1038/s41467-020-16763-y.
Miller E, Widjaja E, Blaser S, Dennis M, Raybaud C (2008) The old and the new: supratentorial MR findings in Chiari II malformation. Childs Nerv Syst 24(5):563–575. https://doi.org/10.1007/s00381-007-0528-x.
Contributed Indexing :
Keywords: Cortical spectral matching; Fetal surgery; MRI; Myelomeningocele; Shape; Volume
Entry Date(s) :
Date Created: 20210502 Latest Revision: 20210502
Update Code :
20210506
DOI :
10.1007/s00234-021-02725-8
PMID :
33934181
Czasopismo naukowe
Purpose: A retrospective study was performed to study the effect of fetal surgery on brain development measured by MRI in fetuses with myelomeningocele (MMC).
Methods: MRI scans of 12 MMC fetuses before and after surgery were compared to 24 age-matched controls without central nervous system abnormalities. An automated super-resolution reconstruction technique generated isotropic brain volumes to mitigate 2D MRI fetal motion artefact. Unmyelinated white matter, cerebellum and ventricles were automatically segmented, and cerebral volume, shape and cortical folding were thereafter quantified. Biometric measures were calculated for cerebellar herniation level (CHL), clivus-supraocciput angle (CSO), transverse cerebellar diameter (TCD) and ventricular width (VW). Shape index (SI), a mathematical marker of gyrification, was derived. We compared cerebral volume, surface area and SI before and after MMC fetal surgery versus controls. We additionally identified any relationship between these outcomes and biometric measurements.
Results: MMC ventricular volume/week (mm 3 /week) increased after fetal surgery (median: 3699, interquartile range (IQR): 1651-5395) compared to controls (median: 648, IQR: 371-896); P = 0.015. The MMC SI is higher pre-operatively in all cerebral lobes in comparison to that in controls. Change in SI/week in MMC fetuses was higher in the left temporal lobe (median: 0.039, IQR: 0.021-0.054), left parietal lobe (median: 0.032, IQR: 0.023-0.039) and right occipital lobe (median: 0.027, IQR: 0.019-0.040) versus controls (P = 0.002 to 0.005). Ventricular volume (mm 3 ) and VW (mm) (r = 0.64), cerebellar volume and TCD (r = 0.56) were moderately correlated.
Conclusions: Following fetal myelomeningocele repair, brain volume, shape and SI were significantly different from normal in most cerebral layers. Morphological brain changes after fetal surgery are not limited to hindbrain herniation reversal. These findings may have neurocognitive outcome implications and require further evaluation.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies