Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Poor sleep is associated with small hippocampal subfields in cognitively normal elderly individuals.

Tytuł:
Poor sleep is associated with small hippocampal subfields in cognitively normal elderly individuals.
Autorzy:
Liu C; Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
Lee SH; Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.
Hernandez-Cardenache R; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
Loewenstein D; Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
Kather J; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
Alperin N; Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
Źródło:
Journal of sleep research [J Sleep Res] 2021 Oct; Vol. 30 (5), pp. e13362. Date of Electronic Publication: 2021 May 05.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Oxford ; Boston : Published on behalf of the European Sleep Research Society by Blackwell Scientific Publications, c1992-
MeSH Terms:
Hippocampus*/diagnostic imaging
Sleep Initiation and Maintenance Disorders*
Aged ; Humans ; Magnetic Resonance Imaging ; Sleep ; Sleep Deprivation
References:
Alperin, N., Lee, S. H., Sivaramakrishnan, A., & Hushek, S. G. (2005). Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. Journal of Magnetic Resonance Imaging, 22(5), 591-596. https://doi.org/10.1002/jmri.20427.
Alperin, N., Wiltshire, J., Lee, S. H., Ramos, A. R., Hernandez-Cardenache, R., Rundek, T., … Loewenstein, D. (2019). Effect of sleep quality on amnestic mild cognitive impairment vulnerable brain regions in cognitively normal elderly individuals. Sleep, 42(3), zsy254. https://doi.org/10.1093/sleep/zsy254.
Beaudreau, S. A., Spira, A. P., Stewart, A., Kezirian, E. J., Lui, L. Y., Ensrud, K., … Study of Osteoporotic Fractures. (2012). Validation of the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale in older black and white women. Sleep Medicine, 13(1), 36-42. https://doi.org/10.1016/j.sleep.2011.04.005.
Biddle, D. J., Robillard, R., Hermens, D. F., Hickie, I. B., & Glozier, N. (2015). Accuracy of self-reported sleep parameters compared with actigraphy in young people with mental ill-health. Sleep Health, 1(3), 214-220. https://doi.org/10.1016/j.sleh.2015.07.006.
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The pittsburgh sleep quality index - A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193-213. https://doi.org/10.1016/0165-1781(89)90047-4.
Carvalho, D. Z., St. Louis, E. K., Boeve, B. F., Mielke, M. M., Przybelski, S. A., Knopman, D. S., … Vemuri, P. (2017). Excessive daytime sleepiness and fatigue may indicate accelerated brain aging in cognitively normal late middle-aged and older adults. Sleep Medicine, 32, 236-243. https://doi.org/10.1016/j.sleep.2016.08.023.
Cheng, J. M., Zhao, X. H., Men, W., & Wang, X. B. (2015). Voxel-based MRI study on brain gray matter of patients with mild cognitive impairment converting to Alzheimer disease. Chin J Med Imaging Technol, 31, 19-23. https://doi.org/10.13929/j.1003-3289.2015.01.005.
Comper, S. M., Jardim, A. P., Corso, J. T., Gaça, L. B., Noffs, M. H. S., Lancellotti, C. L. P., … Yacubian, E. M. T. (2017). Impact of hippocampal subfield histopathology in episodic memory impairment in mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsy & Behavior, 75, 183-189. https://doi.org/10.1016/j.yebeh.2017.08.013.
Duvernoy, H. M., Cattin, F., & Risold, P.-Y. (2013). The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI, 4th ed. Springer.
Fjell, A. M., Sørensen, Ø., Amlien, I. K., Bartrés-Faz, D., Bros, D. M., Buchmann, N., … Walhovd, K. B. (2020). Self-reported sleep relates to hippocampal atrophy across the adult lifespan: Results from the Lifebrain consortium. Sleep, 43(5), zsz280. https://doi.org/10.1093/sleep/zsz280.
Fortier-Brochu, E., & Morin, C. M. (2014). Cognitive impairment in individuals with insomnia: Clinical significance and correlates. Sleep, 37(11), 1789-1800. https://doi.org/10.5665/sleep.4172.
Holth, J. K., Fritschi, S. K., Wang, C., Pedersen, N. P., Cirrito, J. R., Mahan, T. E., … Holtzman, D. M. (2019). The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science, 363(6429), 880-883. https://doi.org/10.1126/science.aav2546.
Joo, E. Y., Kim, H., Suh, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep, 37(7), 1189. https://doi.org/10.5665/sleep.3836.
Joo, E. Y., Kim, S. H., Kim, S. T., & Hong, S. B. (2012). Hippocampal volume and memory in narcoleptics with cataplexy. Sleep Medicine, 13(4), 396-401. https://doi.org/10.1016/j.sleep.2011.09.017.
Kesner, R. P., Lee, I., & Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Reviews in the Neurosciences, 15(5), 333-351. https://doi.org/10.1515/revneuro.2004.15.5.333.
Kreutzmann, J. C., Havekes, R., Abel, T., & Meerlo, P. (2015). Sleep deprivation and hippocampal vulnerability: Changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience, 309, 173-190. https://doi.org/10.1016/j.neuroscience.2015.04.053.
Krysta, K., Bratek, A., Zawada, K., & Stepanczak, R. (2017). Cognitive deficits in adults with obstructive sleep apnea compared to children and adolescents. Journal of Neural Transmission, 124, S187-S201. https://doi.org/10.1007/s00702-015-1501-6.
Loewenstein, D. A., Curiel, R. E., Duara, R., & Buschke, H. (2018). Novel cognitive paradigms for the detection of memory impairment in preclinical Alzheimer's disease. Assessment, 25(3), 348-359. https://doi.org/10.1177/1073191117691608.
Lucey, B. P., Hicks, T. J., McLeland, J. S., Toedebusch, C. D., Boyd, J., Elbert, D. L., & Bateman, R. J. (2018). Effect of sleep on overnight cerebrospinal fluid amyloid beta kinetics. Annals of Neurology, 83(1), 197-204. https://doi.org/10.1002/ana.25117.
Maquet, P. (2001). The role of sleep in learning and memory. Science, 294(5544), 1048-1052. https://doi.org/10.1126/science.1062856.
Morrell, M. J., Jackson, M. L., Twigg, G. L., Ghiassi, R., McRobbie, D. W., Quest, R. A., … Corfield, D. R. (2010). Changes in brain morphology in patients with obstructive sleep apnoea. Thorax, 65(10), 908. https://doi.org/10.1136/thx.2009.126730.
Morrell, M. J., McRobbie, D. W., Quest, R. A., Cummin, A. R. C., Ghiassi, R., & Corfield, D. R. (2003). Changes in brain morphology associated with obstructive sleep apnea. Sleep Medicine, 4(5), 451-454. https://doi.org/10.1016/S1389-9457(03)00159-X.
Mueller, S. G., Laxer, K. D., Scanlon, C., Garcia, P., McMullen, W. J., Loring, D. W., … Weiner, M. W. (2012). Different structural correlates for verbal memory impairment in temporal lobe epilepsy with and without mesial temporal lobe sclerosis. Human Brain Mapping, 33(2), 489-499. https://doi.org/10.1002/hbm.21226.
Neylan, T. C., Mueller, S. G., Wang, Z., Metzler, T. J., Lenoci, M., Truran, D., … Schuff, N. (2010). Insomnia Severity Is Associated With A Decreased Volume Of The CA3/dentate gyrus hippocampal subfield. Biological Psychiatry, 68(5), 494-496. https://doi.org/10.1016/j.biopsych.2010.04.035.
Noh, H. J., Joo, E. Y., Kim, S. T., Yoon, S. M., Koo, D. L., Kim, D., … Hong, S. B. (2012). The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. Journal of Clinical Neurology, 8(2), 130-138. https://doi.org/10.3988/jcn.2012.8.2.130.
Novati, A., Hulshof, H. J., Koolhaas, J. M., Lucassen, P. J., & Meerlo, P. (2011). Chronic sleep restriction causes a decrease in hippocampal volume in adolescent rats, which is not explained by changes in glucocorticoid levels or neurogenesis. Neuroscience, 190, 145-155. https://doi.org/10.1016/j.neuroscience.2011.06.027.
O'Mara, S. M., Commins, S., Anderson, M., & Gigg, J. (2001). The subiculum: A review of form, physiology and function. Progress in Neurobiology, 64(2), 129-155. https://doi.org/10.1016/S0301-0082(00)00054-X.
Pedraza, O., Bowers, D., & Gilmore, R. (2004). Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. Journal of the International Neuropsychological Society, 10(5), 664-678. https://doi.org/10.1017/S1355617704105080.
Poldrack, R. A., & Gabrieli, J. D. E. (1998). Memory and the brain: What's right and what's left? Cell, 93(7), 1091-1093. https://doi.org/10.1016/S0092-8674(00)81451-8.
Raven, F., Van der Zee, E. A., Meerlo, P., & Havekes, R. (2018). The role of sleep in regulating structural plasticity and synaptic strength: Implications for memory and cognitive function. Sleep Medicine Reviews, 39, 3-11. https://doi.org/10.1016/j.smrv.2017.05.002.
Riemann, D., Voderholzer, U., Spiegelhalder, K., Hornyak, M., Buysse, D. J., Nissen, C., … Feige, B. (2007). Chronic insomnia and MRI-measured hippocampal volumes: A pilot study. Sleep, 30(8), 955-958. https://doi.org/10.1093/sleep/30.8.955.
Sabeti, S., Al-Darsani, Z., Mander, B. A., Corrada, M. M., & Kawas, C. H. (2018). Sleep, hippocampal volume, and cognition in adults over 90 years old. Aging Clinical and Experimental Research, 30(11), 1307-1318. https://doi.org/10.1007/s40520-018-1030-x.
Spiegelhalder, K., Regen, W., Baglioni, C., Klöppel, S., Abdulkadir, A., Hennig, J., … Feige, B. (2013). Insomnia does not appear to be associated with substantial structural brain changes. Sleep, 36(5), 731-737. https://doi.org/10.5665/sleep.2638.
Spira, A. P., Beaudreau, S. A., Stone, K. L., Kezirian, E. J., Lui, L.-Y., Redline, S., … Stewart, A. (2012). Reliability and validity of the Pittsburgh sleep quality index and the epworth sleepiness scale in older men. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67(4), 433-439. https://doi.org/10.1093/gerona/glr172.
Spira, A. P., Gamaldo, A. A., An, Y., Wu, M. N., Simonsick, E. M., Bilgel, M., & Resnick, S. M. (2013). Self-reported sleep and beta-amyloid deposition in community-dwelling older adults. Jama Neurology, 70(12), 1537-1543. https://doi.org/10.1001/jamaneurol.2013.4258.
Squire, L. R. (1992). Memory and the hippocampus - a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195-231. https://doi.org/10.1037/0033-295x.99.2.195.
Tzakis, N., & Holahan, M. R. (2019). Social Memory and the Role of the Hippocampal CA2 Region. Frontiers in Behavioral Neuroscience, 13, https://doi.org/10.3389/fnbeh.2019.00233.
Van Der Werf, Y. D., Altena, E., Schoonheim, M. M., Sanz-Arigita, E. J., Vis, J. C., De Rijke, W., & Van Someren, E. J. (2009). Sleep benefits subsequent hippocampal functioning. Nature Neuroscience, 12(2), 122-123. https://doi.org/10.1038/nn.2253.
Waters, F., & Bucks, R. S. (2011). Neuropsychological effects of sleep loss: implication for neuropsychologists. Journal of the International Neuropsychological Society, 17(4), 571-586. https://doi.org/10.1017/S1355617711000610.
Winkelman, J. W., Benson, K. L., Buxton, O. M., Lyoo, I. K., Yoon, S., O'Connor, S., & Renshaw, P. F. (2010). Lack of hippocampal volume differences in primary insomnia and good sleeper controls: An MRI volumetric study at 3 Tesla. Sleep Medicine, 11(6), 576-582. https://doi.org/10.1016/j.sleep.2010.03.009.
Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., … Nedergaard, M. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373-377. https://doi.org/10.1126/science.1241224.
Yushkevich, P. A., Pluta, J. B., Wang, H., Xie, L., Ding, S.-L., Gertje, E. C., … Wolk, D. A. (2015). Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Human Brain Mapping, 36(1), 258-287. https://doi.org/10.1002/hbm.22627.
Zhang, L., Mak, E., Reilhac, A., Shim, H. Y., Ng, K. K., Ong, M. Q. W., … Chen, C. L. H. (2020). Longitudinal trajectory of Amyloid-related hippocampal subfield atrophy in nondemented elderly. Human Brain Mapping, 41(8), 2037-2047. https://doi.org/10.1002/hbm.24928.
Zheng, F., Cui, D., Zhang, L. I., Zhang, S., Zhao, Y., Liu, X., … Qiu, J. (2018). The volume of hippocampal subfields in relation to decline of memory recall across the adult lifespan. Frontiers in Aging Neuroscience, 10, 320. https://doi.org/10.3389/fnagi.2018.00320.
Grant Information:
R01 AG047649 United States AG NIA NIH HHS
Contributed Indexing:
Keywords: MRI volumetry; hippocampal subfields; sleep duration; sleep quality
Entry Date(s):
Date Created: 20210505 Date Completed: 20211021 Latest Revision: 20221012
Update Code:
20240104
DOI:
10.1111/jsr.13362
PMID:
33949039
Czasopismo naukowe
Recent studies demonstrated reduced hippocampal volumes in elderly healthy individuals who are cognitively normal but poor sleepers. The association between sleep quality and the pattern of volume loss across hippocampal subfields (HSs) is not well known. Thus, it is the focus of the present study. Sleep quality was self-assessed using the Pittsburgh Sleep Quality Index (PSQI). The HS volumes were measured using sub-millimetre in-plane resolution T2-weighted magnetic resonance imaging data. A total of 67 cognitively normal elderly individuals aged 60-83 years were classified into 30 normal sleepers with a PSQI <5 and 37 poor sleepers with a PSQI ≥5. The two groups were equivalent in age, gender distribution, ethnicity, education attainment, handedness and cognitive performance. Compared to normal sleepers, poor sleepers exhibited significantly lower normalised volumes in the left cornu ammonis field 1 (CA1), dentate gyrus (DG) and subiculum. In contrast, there were no significant differences in normalised grey and white matter volumes between the two groups. The global PSQI was negatively associated with the normalised volumes of the left CA1, DG and subiculum. Sleep duration was associated with the normalised volumes of the bilateral CA1, DG, left CA2 and subiculum. Verbal memory scores were associated with the left CA1 volume. In conclusion, poor sleep quality, especially insufficient sleep duration, was associated with volume loss in several HSs that are involved in specific learning and memory tasks. As the hippocampus does not regulate sleep, it is more likely that poor sleep leads to small hippocampi. Thus, based on this assumption, improving sleep quality of poor sleeper elderly individuals could benefit hippocampal health.
(© 2021 European Sleep Research Society.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies