Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mining Protein Expression Databases Using Network Meta-Analysis.

Tytuł:
Mining Protein Expression Databases Using Network Meta-Analysis.
Autorzy:
Winter C; Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
Jung K; Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany. .
Źródło:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2021; Vol. 2228, pp. 419-431.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
MeSH Terms:
Data Mining*
Databases, Protein*
Network Meta-Analysis*
Proteomics*
Breast Neoplasms/*metabolism
Neoplasm Proteins/*analysis
Female ; High-Throughput Screening Assays ; Humans ; Research Design ; Software
References:
Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210. (PMID: 10.1093/nar/30.1.207)
Brazma A, Parkinson H, Sarkans U et al (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res 31(1):68–71. (PMID: 10.1093/nar/gkg091)
Vizcaíno JA, Csordas A, Del-Toro N et al (2015) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456. (PMID: 10.1093/nar/gkv1145)
Hofner B, Schmid M, Edler L (2016) Reproducible research in statistics: a review and guidelines for the Biometrical Journal. Biom J 58(2):416–427. (PMID: 10.1002/bimj.201500156)
Baker M (2016) 1500 scientists lift the lid on reproducibility. Nature 533(7604):452. (PMID: 10.1038/533452a)
Burke DL, Ensor J, Riley RD (2017) Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat Med 36(5):855–875. (PMID: 10.1002/sim.7141)
Marot G, Foulley JL, Mayer CD et al (2009) Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics 25(20):2692–2699. (PMID: 10.1093/bioinformatics/btp444)
Rau A, Marot G, Jaffrézic F (2014) Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics 15(1):91. (PMID: 10.1186/1471-2105-15-91)
Lazar C, Meganck S, Taminau J et al (2012) Batch effect removal methods for microarray gene expression data integration: a survey. Briefings Bioinform 14(4):469–490. (PMID: 10.1093/bib/bbs037)
Callister SJ, Barry RC, Adkins JN et al (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5(2):277–286. (PMID: 10.1021/pr050300l)
Kreil DP, Karp NA, Lilley KS (2004) DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results. Bioinformatics 20(13):2026–2034. (PMID: 10.1093/bioinformatics/bth193)
Winter C, Kosch R, Ludlow M et al (2019) Network meta-analysis correlates with analysis of merged independent transcriptome expression data. BMC Bioinformatics 20(1):144. (PMID: 10.1186/s12859-019-2705-9)
Rohart F, Gautier B, Singh A et al (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13(11):e1005752. (PMID: 10.1371/journal.pcbi.1005752)
Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nature Gen 45(10):1113. (PMID: 10.1038/ng.2764)
Bolstad BM, Irizarry RA, Åstrand M et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193. (PMID: 10.1093/bioinformatics/19.2.185)
Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127. (PMID: 10.1093/biostatistics/kxj037)
Hornung R, Boulesteix AL, Causeur D (2016) Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment. BMC Bioinformatics 17(1):27. (PMID: 10.1186/s12859-015-0870-z)
Nygaard V, Rødland EA, Hovig E (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 17(1):29–39. (PMID: 10.1093/biostatistics/kxv027)
Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Res Synth Methods 3(4):312–324. (PMID: 10.1002/jrsm.1058)
van Valkenhoef G, Lu G, de Brock B et al (2012) Automating network meta-analysis. Res Synth Methods 3(4):285–299. (PMID: 10.1002/jrsm.1054)
Dias S, Sutton AJ, Ades AE, Welton NJ (2013) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 33(5):607–617. (PMID: 10.1177/0272989X12458724)
Zhang J, Carlin BP, Neaton JD et al (2014) Network meta-analysis of randomized clinical trials: reporting the proper summaries. Clin Trials 11(2):246–262. (PMID: 10.1177/1740774513498322)
Skapenko A, Leipe J, Niesner U et al (2004) GATA-3 in human T cell helper type 2 development. J Exp Med 199(3):423–428. (PMID: 10.1084/jem.20031323)
Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9(2):125. (PMID: 10.1038/nri2476)
Asselin-Laba ML, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol 9(2):201. (PMID: 10.1038/ncb1530)
Kouros-Mehr H, Slorach EM, Sternlicht MD et al (2006) GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127(5):1041–1055. (PMID: 10.1016/j.cell.2006.09.048)
Fararjeh AFS, Tu SH, Chen LC et al (2018) The impact of the effectiveness of GATA3 as a prognostic factor in breast cancer. Hum Pathol 80:219–230. (PMID: 10.1016/j.humpath.2018.06.004)
Mehra R, Varambally S, Ding L et al (2005) Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 65(24):11,259–11,264. (PMID: 10.1158/0008-5472.CAN-05-2495)
Dydensborg AB, Rose AAN, Wilson BJ et al (2009) GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 28(29):2634. (PMID: 10.1038/onc.2009.126)
Yan W, Cao Q, Arenas RB et al (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285(18):14,042–14,051. (PMID: 10.1074/jbc.M110.105262)
Contributed Indexing:
Keywords: Batch effects; Biological databases; Data merging; Data mining; Network meta-analysis; Protein expression data; Publication guidelines; Reproducibility; Research synthesis
Substance Nomenclature:
0 (Neoplasm Proteins)
Entry Date(s):
Date Created: 20210505 Date Completed: 20210623 Latest Revision: 20210623
Update Code:
20240104
DOI:
10.1007/978-1-0716-1024-4_29
PMID:
33950507
Czasopismo naukowe
Public databases featuring original, raw data from "Omics" experiments enable researchers to perform meta-analyses by combining either the raw data or the summarized results of several independent studies. In proteomics, high-throughput protein expression data is measured by diverse techniques such as mass spectrometry, 2-D gel electrophoresis or protein arrays yielding data of different scales. Therefore, direct data merging can be problematic, and combining the summarized data of the individual studies can be advantageous. A special form of meta-analysis is network meta-analysis, where studies with different settings of experimental groups can be combined. However, all studies must be linked by one experimental group that has to appear in each study. Usually that is the control group. Then, a study network is formed and indirect statistical inferences can also be made between study groups that appear not in each of the studies.In this chapter, we describe the working principle of and available software for network meta-analysis. The applicability to high-throughput protein expression data is demonstrated in an example from breast cancer research. We also describe the special challenges when applying this method.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies