Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Outdoor human decomposition in Sweden: A retrospective quantitative study of forensic-taphonomic changes and postmortem interval in terrestrial and aquatic settings.

Tytuł:
Outdoor human decomposition in Sweden: A retrospective quantitative study of forensic-taphonomic changes and postmortem interval in terrestrial and aquatic settings.
Autorzy:
Alfsdotter C; Faculty of Art and Humanities, School of Cultural Studies, Linnaeus University, Kalmar, Sweden.
Petaros A; Division of Forensic Medicine in Linköping, National Board of Forensic Medicine, Linköping, Sweden.
Źródło:
Journal of forensic sciences [J Forensic Sci] 2021 Jul; Vol. 66 (4), pp. 1348-1363. Date of Electronic Publication: 2021 May 05.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2006- : Malden, MA : Blackwell Pub.
Original Publication: [Chicago, Ill.] : Callaghan and Co., 1956-
MeSH Terms:
Burial*
Environmental Exposure*
Immersion*
Postmortem Changes*
Adolescent ; Adult ; Aged ; Aged, 80 and over ; Female ; Forensic Pathology ; Humans ; Male ; Middle Aged ; Regression Analysis ; Retrospective Studies ; Sweden ; Temperature ; Young Adult
References:
Rodriguez WC, Bass WM. Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci. 1985;30(3):836-52. https://doi.org/10.1520/jfs11017j.
Micozzi MS. Postmortem change in human and animal remains: a systematic approach. Springfield, IL: Charles C. Thomas; 1991: 3-15.
Haglund WD, Sorg MH. Method and theory of forensic taphonomic research. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 13-26.
Sorg MH, Haglund WD. Advancing forensic taphonomy: Purpose, theory, and practice. In: Haglund WD, Sorg MH, editors. Advances in forensic taphonomy: methods, theory, and archaeological perspectives. Boca Raton, FL: CRC Press; 2002. p. 3-30.
Carter DO, Tibbett M. Cadaver decomposition and soil. In: Tibbett M, Carter D, editors. Soil analysis in forensic taphonomy. Boca Raton, FL: CRC Press; 2008. p. 29-52.
Pokines JT. Introduction: collection of macroscopic osseus taphonomic data and the recognition of taphonomic suites of characteristics. In: Pokines JT, Symes SA, editors. Manual of forensic taphonomy. Boca Raton, FL: CRC Press; 2013. p. 1-18.
Dirkmaat DC, Cabo LL. Forensic archaeology and forensic taphonomy: basic considerations on how to properly process and interpret the outdoor forensic scene. Acad Forensic Pathol. 2016;6(3):439-54. https://doi.org/10.23907/2016.045.
Schotsmans EMJ, Márquez-Grant N, Forbes SL. Introduction. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester, U.K.: John Wiley & Sons; 2017. p. 1-8.
DiMaio D, DiMaio VJM. Forensic pathology, 2nd edn. Boca Raton, FL: CRC Press; 2001. p. 21-38.
Forbes SL, Perrault KA, Comstock JL. Microscopic post-mortem changes: the chemistry of decomposition. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester, U.K.: John Wiley & Sons; 2017. p. 26-38.
Gill-King H. Chemical and ultrastructural aspects of decomposition. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 93-108.
Vass A, Barshick S, Sega G, Caton J, Skeen J, Love J, et al. Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci. 2002;47(3):542-53. https://doi.org/10.1520/JFS15294J.
Janaway RC, Percival SL, Wilson AS. Decomposition of human remains. In: Percival SL, editor. Microbiology and aging: clinical manifestations. New York, NY: Springer; 2009. p. 313-34.
Pinheiro J. Decay Process of a Cadaver. In: Schmitt A, Cunha E, Pinheiro J, editors. Decay Process of a Cadaver. Totowa, NJ: Humana Press; 2006. p. 85-116.
Galloway A. The process of decomposition: a model from the Arizona-Sonoran Desert. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 139-50.
Clark MA, Worrell MB, Pless JE. Postmortem changes in soft tissues. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 151-64.
Megyesi MS, Nawrocki SP, Haskell NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci. 2005;50(3):618-26. https://doi.org/10.1520/jfs2004017.
Damann FE, Carter DO. Human decomposition ecology and postmortem microbiology. In: Pokines JT, Symes SA, editors. Manual of forensic taphonomy. Boca Raton, FL: CRC Press; 2013. p. 37-49.
Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Oxford, U.K.: Blackwell; 1979. p. 5-15.
Mann RW, Bass WM, Meadows L. Time since death and decomposition of the human body: variables and observations in case and experimental field studies. J Forensic Sci. 1990;35(1):101-11. https://doi.org/10.1520/jfs12806j.
Forbes SL. Decomposition chemistry in a burial environment. In: Tibbett M, Carter DO, editors. Soil analysis in forensic taphonomy: chemical and biological effects of buried human remains. Boca Raton, FL: CRC Press; 2008. p. 215-36.
Giles SB, Harrison K, Errickson D, Márquez-Grant N. The effect of seasonality on the application of accumulated degree-days to estimate the early post-mortem interval. Forensic Sci Int. 2020;315:110419. https://doi.org/10.1016/j.forsciint.2020.110419.
Micozzi MS. Frozen environments and soft tissue preservation. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 171-8.
Micozzi MS. Experimental study of postmortem change under field conditions: effects of freezing, thawing, and mechanical injury. J Forensic Sci. 1986;31(3):953-61. https://doi.org/10.1520/jfs11103j.
Lennartz A, Hamilton MD, Weaver R. Moisture content in decomposing, desiccated, and mummified human tissue. Forensic Anthropology. 2020;3(1):1-16. https://doi.org/10.5744/fa.2020.1001.
Galloway A, Birkby WH, Jones AM, Henry TE, Parks BO. Decay rates of human remains in an arid environment. J Forensic Sci. 1989;34(3):607-16. https://doi.org/10.1520/jfs12680j.
Mant AK. A study in exhumation data [dissertation]. London, U.K.: University of London; 1950.
Mant AK. Knowledge acquired from post-war exhumations. In: Boddington A, Garland AN, Janaway RC, editors. Death, decay and reconstruction: approaches to archaeology and forensic science. Manchester, U.K.: Manchester University Press; 1987. p. 65-78.
Ubelaker DH, Zarenko KM. Adipocere: what is known after over two centuries of research. Forensic Sci Int. 2011;208(1-3):167-72. https://doi.org/10.1016/j.forsciint.2010.11.024.
Hopkins D. The role of soil organisms in terrestrial decomposition. In: Tibbett M, Carter DO, editors. Soil analysis in forensic taphonomy. Boca Raton, FL: CRC Press; 2008. p 61-74.
Myburgh J, L’Abbé EN, Steyn M, Becker PJ. Estimating the postmortem interval (PMI) using accumulated degree-days (ADD) in a temperate region of South Africa. Forensic Sci Int. 2013;229(1-3):165.e1-165.e6. https://doi.org/10.1016/j.forsciint.2013.03.037.
Marhoff SJ, Fahey P, Forbes SL, Green H. Estimating post-mortem interval using accumulated degree-days and a degree of decomposition index in Australia: a validation study. Aust J Forensic Sci. 2016;48(1):24-36. https://doi.org/10.1080/00450618.2015.1021378.
Moffatt C, Simmons T, Lynch-Aird J. An improved equation for TBS and ADD: establishing a reliable postmortem interval framework for casework and experimental studies. J Forensic Sci. 2016;61:201-7. https://doi.org/10.1111/1556-4029.12931.
Wescott D, Steadman D, Miller N, Sauerwein K, Clemmons C, Gleiber D, et al. Validation of the total body score/accumulated degree-day model at three human decomposition facilities. Forensic Anthropol. 2018;1(3):143-9. https://doi.org/10.5744/fa.2018.0015.
Forbes MNS, Finaughty DA, Miles KL, Gibbon VE. Inaccuracy of accumulated degree day models for estimating terrestrial post-mortem intervals in Cape Town. South Africa. Forensic Sci Int. 2019;296:67-73. https://doi.org/10.1016/j.forsciint.2019.01.008.
Marshall L. Bone modification and “The laws of burial”. In: Bonnichsen R, Sorg MH, editors. Bone modification. Orono, ME: The Center for the Study of First Americans; 1989. p. 7-24.
Humphreys MK, Panacek E, Green W, Albers E. Comparison of protocols for measuring and calculating postmortem submersion intervals for human analogs in fresh water. J Forensic Sci. 2013;58(2):513-7. https://doi.org/10.1111/1556-4029.12033.
Wescott DJ. Recent advances in forensic anthropology: decomposition research. Forensic Sci Res. 2018;3(4):327-42. https://doi.org/10.1080/20961790.2018.1488571.
Forbes SL, Perrault K, Stefanuto PH, Nizio K, Focant JF. Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One 2014;9(11):e113681. https://doi.org/10.1371/journal.pone.0113681.
Ceciliason A-S. Forensic taphonomy in an indoor setting: implications for estimation of the post-mortem interval [dissertation]. Uppsala, Sweden: Uppsala University, 2020.
Andersson MG, Ceciliason A-S, Sandler H, Mostad P. Application of the Bayesian framework for forensic interpretation to casework involving postmortem interval estimates of decomposed human remains. Forensic Sci Int. 2019;301:402-14. https://doi.org/10.1016/j.forsciint.2019.05.050.
Ceciliason A-S, Andersson MG, Lindström A, Sandler H. Quantifying human decomposition in an indoor setting and implications for postmortem interval estimation. Forensic Sci Int. 2018;283:180-9. https://doi.org/10.1016/j.forsciint.2017.12.026.
Fremdt H, Szpila K, Huijbregts J, Lindström A, Zehner R, Amendt J. Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae): a new species of interest for forensic entomology in Europe. Forensic Sci Int. 2012;222(1-3):335-9. https://doi.org/10.1016/j.forsciint.2012.07.013.
SCB. Statisctics Sweden. Folkmängden efter region, civilstånd, ålder och kön. År 1968 - 2019. [Population by region, marital status, age and sex. Years 1968-2019]. https://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START__BE__BE0101__BE0101A/BefolkningNy/. Accessed 26 Nov 2020.
Nygren M, Giese M, Kløve B, Haaf E, Rossi PM, Barthel R. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. J Hydrol X. 2020;8:100062. https://doi.org/10.1016/j.hydroa.2020.100062.
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15(3):259-63. https://doi.org/10.1127/0941-2948/2006/0130.
Rubel F, Brugger K, Haslinger K, Auer I. The climate of the European Alps: shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorol. Z. 2017;26(2):115-25. https://doi.org/10.1127/metz/2016/0816.
SMHI - The Swedish Meteorological and Hydrological Institute. Jordens huvudklimattyper [Earth’s main climate types]. https://www.SMHI.se/kunskapsbanken/klimat/jordens-klimat/jordens-huvudklimattyper-1.640. Accessed 15 Dec 2020.
Heaton V, Lagden A, Moffatt C, Simmons T. Predicting the postmortem submersion interval for human remains recovered from U.K. waterways. J Forensic Sci. 2010;55(2):302-7. https://doi.org/10.1111/j.1556-4029.2009.01291.x.
SMHI - The Swedish Meteorological and Hydrological Institute. About SMHI. https://www.SMHI..se/en/about-SMHI. Accessed 1 Nov 2020.
SMHI. HypeWeb-Scientific estimates of past, present and future Water Resources. https://hypeweb.smhi.se/. Accessed 10 Nov 2020.
SMHI- The Swedish Meteorological and Hydrological Institute. Modelldata per område [Model data per area]. https://vattenwebb.smhi.se/modelarea/. Accessed 12 Nov 2020.
Lantmäteriet - the Swedish mapping, cadastral and land registration authority. GSD-Terrängkartan vektor ver. 5.9 [the GSD Terrain map vector ver. 5.9]. https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/produktlista/terrangkartan/. Accessed 25 Sept 2020.
Archer MS. The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci. 2004;49:553-9. https://doi.org/10.1520/jfs2003258.
Dabbs GR. Caution! All data are not created equal: the hazards of using national weather service data for calculating accumulated degree days. Forensic Sci Int 2010;202(1-3):e49-e52. https://doi.org/10.1016/j.forsciint.2010.02.024.
Campobasso CP, di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120(1-2):18-27. https://doi.org/10.1016/S0379-0738(01)00411-X.
Haskell NH, Hall RD, Cervenka VJ, Clark M. On the body: insects’ life stage presence, their postmortem artifacts. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p 415-48.
Catts EP, Goff ML. Forensic entomology in criminal investigations. Annu Rev Entomol. 1992;37(1):253-72. https://doi.org/10.1146/annurev.en.37.010192.001345.
Komar DA. Decay rates in a cold climate region: a review of cases involving advanced decomposition from the Medical Examiner’s Office in Edmonton. Alberta. J Forensic Sci. 1998;43(1):57-61. https://doi.org/10.1520/jfs16090j.
Forbes SL, Wilson MEA, Stuart BH. Examination of adipocere formation in a cold water environment. Int J Legal Med. 2011;125(5):643-50. https://doi.org/10.1007/s00414-010-0460-6.
Kahana T, Almog J, Levy J, Shmeltzer E, Spier Y, Hiss J. Marine taphonomy: adipocere formation in a series of bodies recovered from a single shipwreck. J Forensic Sci. 1999;44(5):897-901. https://doi.org/10.1520/jfs12012j.
Dumser TK, Türkay M. Postmortem changes of human bodies on the bathyal sea floor - Two cases of aircraft accidents above the open sea. J Forensic Sci. 2008;53(5):1049-52. https://doi.org/10.1111/j.1556-4029.2008.00816.x.
Widya M, Moffatt C, Simmons T. The formation of early stage adipocere in submerged remains: a preliminary experimental study. J Forensic Sci. 2012;57(2):328-33. https://doi.org/10.1111/j.1556-4029.2011.01980.x.
Roksandic M. Position of skeletal remains as a key to understanding mortuary behavior. In: Haglund WD, Sorg MH, editors. Advances in forensic taphonomy method, theory and archaeological perspectives. Boca Raton, FL: CRC Press; 2002. p. 99-117.
Stuart BH, Ueland M. Decomposition in aquatic environments. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester, U.K.: John Wiley & Sons; 2017. p. 235-50.
Hamilton S, Green M. Gross post-mortem changes in the human body. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester, U.K.: John Wiley & Sons; 2017. p 11-25.
Shalaby OA, deCarvalho LML, Goff ML. Comparison of patterns of decomposition in a hanging carcass and a carcass in contact with soil in a xerophytic habitat on the Island of Oahu. Hawaii. J Forensic Sci. 2000;45(6):1267-73. https://doi.org/10.1520/jfs14877j.
Lynch-Aird J, Moffatt C, Simmons T. Decomposition rate and pattern in hanging pigs. J Forensic Sci. 2015;60(5):1155-63. https://doi.org/10.1111/1556-4029.12796.
Rodriguez WC. Decomposition of buried and submerged bodies. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 459-68.
Cockle DL, Bell LS. The environmental variables that impact human decomposition in terrestrially exposed contexts within Canada. Sci Justice. 2017;57(2):107-17. https://doi.org/10.1016/j.scijus.2016.11.001.
Bugelli V, Gherardi M, Focardi M, Pinchi V, Vanin S, Campobasso CP. Decomposition pattern and insect colonization in two cases of suicide by hanging. Forensic Sci Res. 2018;3(1):94-102. https://doi.org/10.1080/20961790.2017.1418622.
de Leeuwe R, Groen M. A taphonomic study based on observations of 196 exhumations and 23 clandestine burials. In: Schotsmans EMJ, Márquez-Grant N, Forbes SL, editors. Taphonomy of human remains: forensic analysis of the dead and the depositional environment. Chichester, U.K.: John Wiley & Sons; 2017. p. 394-401.
Reijnen G, Gelderman HT, Oude Grotebevelsborg BFL, Reijnders UJL, Duijst WLJM. The correlation between the Aquatic Decomposition Score (ADS) and the post-mortem submersion interval measured in Accumulated Degree Days (ADD) in bodies recovered from fresh water. Forensic Sci Med Pathol. 2018;14(3):301-6. https://doi.org/10.1007/s12024-018-9987-5.
De Donno A, Campobasso CP, Santoro V, Leonardi S, Tafuri S, Introna F. Bodies in sequestered and non-sequestered aquatic environments: a comparative taphonomic study using decompositional scoring system. Sci Justice. 2014;54(6):439-46. https://doi.org/10.1016/j.scijus.2014.10.003.
van Daalen MA, de Kat DS, Oude Grotebevelsborg BFL, de Leeuwe R, Warnaar J, Oostra RJ, et al. An aquatic decomposition scoring method to potentially predict the postmortem submersion interval of bodies recovered from the North Sea. J Forensic Sci. 2017;62(2):369-73. https://doi.org/10.1111/1556-4029.13258.
Palazzo C, Pelletti G, Fais P, Boscolo-Berto R, Fersini F, Gaudio RM, et al. Postmortem submersion interval in human bodies recovered from fresh water in an area of Mediterranean climate. Application and comparison of preexisting models. Forensic Sci Int. 2020;306:110051. https://doi.org/10.1016/j.forsciint.2019.110051.
Palazzo C, Pelletti G, Fais P, Giorgetti A, Boscolo-Berto R, Gaudio RM, et al. Application of aquatic decomposition scores for the determination of the Post Mortem Submersion Interval on human bodies recovered from the Northern Adriatic Sea. Forensic Sci Int. 2021;318:110599. https://doi.org/10.1016/j.forsciint.2020.110599.
Byard RW. Putrefaction: an additional complicating factor in the assessment of freshwater drownings in rivers. J Forensic Sci. 2018;63(3):899-901. https://doi.org/10.1111/1556-4029.13614.
Anderson GS, Hobischak NR. Decomposition of carrion in the marine environment of British Columbia. Canada. Int J Leg Med. 2004; 118(4):206-9. https://doi.org/10.1007/s00414-004-0447-2.
Haskell NH, McShaffrey DG, Hawley DA, Williams RE, Pless JE. Use of aquatic insects in determining submersion interval. J Forensic Sci. 1989;34(3):622-32.
Haglund WD, Sorg MH. Human remains in water environments. In: Haglund WD, Sorg MH, editors. Advances in forensic taphonomy: methods, theory, and archaeological perspectives. Boca Raton, FL: CRC Press; 2002. p 201-18.
Nawrocki SP, Pless JE, Hawley DA, Wagner SA. Fluvial transport of human crania. In: Haglund WD, Sorg MH, editors. Forensic taphonomy: the postmortem fate of human remains. Boca Raton, FL: CRC Press; 1997. p. 529-52.
Palmer C. Estimating the impact of laminar flow on the pattern and rate of decomposition in aquatic environments-Is there a better way of modeling decomposition? J Forensic Sci. 2020;65(5):1601-9. https://doi.org/10.1111/1556-4029.14441.
Meyer J, Anderson B, Carter DO. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J Forensic Sci. 2013;58(5):1175-82. https://doi.org/10.1111/1556-4029.12169.
Archer MS. Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Sci Justice. 2004;44(1):35-41. https://doi.org/10.1016/S1355-0306(04)71683-4.
Simmons T, Adlam E, Moffatt C. Debugging decomposition data - comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J Forensic Sci. 2010;55(1):8-13. https://doi.org/10.1111/j.1556-4029.2009.01206.x.
Contributed Indexing:
Keywords: Sweden; aquatic decomposition; forensic anthropology; forensic taphonomy; postmortem interval; terrestrial decomposition
Entry Date(s):
Date Created: 20210505 Date Completed: 20210727 Latest Revision: 20210727
Update Code:
20240104
DOI:
10.1111/1556-4029.14719
PMID:
33951184
Czasopismo naukowe
This paper presents a quantitative retrospective study of gross human decomposition in central and southeastern Sweden. The applicability of methods developed abroad for postmortem interval (PMI) estimation from decomposition morphology and temperature are is evaluated. Ninety-four cases were analyzed (43 terrestrial and 51 aquatic) with a median PMI of 48 days. The results revealed differences in decomposition patterns between aquatic, surface, hanging, and buried remains. While partial saponification and desiccation occurred in cases of surface remains, complete skeletonization was observed in all cases with a PMI over two years. Aquatic skeletonization was slower due to extensive saponification in cases with PMI higher than one year. Formulae for assessing accumulated degree-days (ADD) from the original methods did not fit the study material. However, a regression analysis demonstrated that 80% of decomposition variance in surface remains could be explained by ADD, suggesting that a geographically adapted equation holds promise for assessing PMI. In contrast, the model fit was poor for aquatic cases (43%). While this may be explained by problems in obtaining reliant aquatic temperature data or an insufficient scoring system, aquatic decomposition may be highly dependent on factors other than ADD alone. This study evaluates the applicability of current PMI methods on an outdoor sample from a previously unpublished region, and represents the first scientific publication of human outdoor decomposition patterns in Sweden. Suggestions for future research are provided, including that scoring methods should incorporate saponification to fit forensic taphonomy in Swedish environments.
(© 2021 The Authors. Journal of Forensic Sciences published by Wiley Periodicals LLC on behalf of American Academy of Forensic Sciences.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies