Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19.

Tytuł:
Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19.
Autorzy:
Oh KK; Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea.
Adnan M; Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea.
Cho DH; Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea. .
Źródło:
Scientific reports [Sci Rep] 2021 May 05; Vol. 11 (1), pp. 9606. Date of Electronic Publication: 2021 May 05.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Anti-Inflammatory Agents, Non-Steroidal/*pharmacology
Antiviral Agents/*pharmacology
Drug Evaluation, Preclinical/*methods
Proteins/*metabolism
SARS-CoV-2/*drug effects
Anti-Inflammatory Agents, Non-Steroidal/metabolism ; Antiviral Agents/metabolism ; Humans ; Mitogen-Activated Protein Kinase 10/chemistry ; Mitogen-Activated Protein Kinase 10/metabolism ; Mitogen-Activated Protein Kinase 8/chemistry ; Mitogen-Activated Protein Kinase 8/metabolism ; Molecular Targeted Therapy ; Protein Interaction Maps/drug effects ; SARS-CoV-2/metabolism ; Signal Transduction/drug effects ; bcl-Associated Death Protein/chemistry ; bcl-Associated Death Protein/metabolism ; ras Proteins/metabolism
References:
Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):219-222. (PMID: 32164092)
Nat Biotechnol. 2007 Feb;25(2):197-206. (PMID: 17287757)
Eur Heart J. 2020 May 14;41(19):1810-1817. (PMID: 32388565)
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15935-15946. (PMID: 32571912)
J Pharmacokinet Pharmacodyn. 2020 Jun;47(3):189-198. (PMID: 32435882)
RSC Adv. 2021 Mar 17;11(19):11062-11082. (PMID: 35423640)
Clin Immunol. 2020 May;214:108393. (PMID: 32222466)
N Engl J Med. 2020 Apr 23;382(17):1653-1659. (PMID: 32227760)
Aliment Pharmacol Ther. 2002 Apr;16 Suppl 2:90-101. (PMID: 11966529)
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19468-73. (PMID: 19033472)
J Am Coll Cardiol. 2020 Jul 21;76(3):277-279. (PMID: 32674791)
Prostate. 2019 Jun;79(8):909-919. (PMID: 30958912)
Nat Rev Immunol. 2020 Jun;20(6):345-346. (PMID: 32358580)
Agents Actions. 1992;Spec No:C82-3. (PMID: 1442340)
Gene. 2021 Feb 5;768:145320. (PMID: 33248199)
Best Pract Res Clin Endocrinol Metab. 2019 Dec;33(6):101324. (PMID: 31564625)
BMJ. 2020 Mar 27;368:m1185. (PMID: 32220865)
PLoS One. 2018 Jan 18;13(1):e0190935. (PMID: 29346407)
Pharmaceutics. 2019 May 17;11(5):. (PMID: 31108878)
J Infect Public Health. 2020 May;13(5):667-673. (PMID: 32340833)
Curr Pharmacol Rep. 2020;6(3):56-70. (PMID: 32395418)
Differentiation. 2019 Jul - Aug;108:24-32. (PMID: 30718056)
Antivir Ther. 2006;11(8):1021-30. (PMID: 17302372)
Chest. 2020 Jul;158(1):55-56. (PMID: 32243944)
Ann Clin Biochem. 2005 Jul;42(Pt 4):301-3. (PMID: 15989731)
J Virol. 2004 Dec;78(23):12964-74. (PMID: 15542648)
J Clin Invest. 2018 Apr 2;128(4):1538-1550. (PMID: 29528335)
J Virol. 2012 Sep;86(17):9025-34. (PMID: 22675000)
Front Immunol. 2014 Sep 25;5:461. (PMID: 25309543)
Ann N Y Acad Sci. 2011 Dec;1243:88-102. (PMID: 22211895)
J Allergy Clin Immunol. 2017 Aug;140(2):418-430. (PMID: 28043871)
Immunobiology. 2006;211(10):815-20. (PMID: 17113919)
Theranostics. 2020 Jun 12;10(16):7448-7464. (PMID: 32642005)
Ecancermedicalscience. 2020 Mar 30;14:1023. (PMID: 32256706)
Biochem Biophys Res Commun. 2004 Jul 9;319(4):1228-34. (PMID: 15194498)
Acta Pharm Sin B. 2021 Jan;11(1):1-12. (PMID: 33072500)
PLoS One. 2020 Dec 31;15(12):e0240873. (PMID: 33382706)
Virology. 2000 Oct 10;276(1):44-51. (PMID: 11021993)
Mol Med Rep. 2016 May;13(5):3715-23. (PMID: 27035868)
Pharmaceuticals (Basel). 2010 Jul 07;3(7):2146-2162. (PMID: 27713346)
Curr Opin Virol. 2015 Jun;12:7-14. (PMID: 25644461)
Acta Orthop. 2007 Feb;78(1):90-4. (PMID: 17453398)
PLoS One. 2017 May 2;12(5):e0176527. (PMID: 28464042)
J Virol. 2014 Jan;88(2):913-24. (PMID: 24198408)
Viruses. 2017 Sep 25;9(10):. (PMID: 28946654)
Am J Gastroenterol. 2005 Apr;100(4):856-61. (PMID: 15784032)
J Neuroinflammation. 2020 Apr 7;17(1):108. (PMID: 32264928)
Ann Intern Med. 2021 Feb;174(2):286-287. (PMID: 33587872)
BMC Microbiol. 2014 Sep 02;14:230. (PMID: 25179342)
Cells. 2019 May 31;8(6):. (PMID: 31159306)
Aging Dis. 2018 Feb 1;9(1):143-150. (PMID: 29392089)
Nat Prod Bioprospect. 2020 Oct;10(5):325-335. (PMID: 32772313)
J Med Chem. 2017 Mar 9;60(5):1662-1664. (PMID: 28234469)
J Immunol Res. 2018 Nov 21;2018:8410182. (PMID: 30584543)
J Mol Neurosci. 2021 Nov;71(11):2192-2209. (PMID: 33464535)
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613. (PMID: 30476243)
Front Cardiovasc Med. 2020 Aug 11;7:143. (PMID: 32850989)
J Mol Histol. 2004 Nov;35(8-9):771-83. (PMID: 15609090)
Diabetes Metab Syndr. 2020 Jul - Aug;14(4):407-412. (PMID: 32335367)
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10970-10975. (PMID: 32350134)
Eur Heart J. 2020 Jun 7;41(22):2092-2112. (PMID: 32511724)
Bioinformatics. 2013 Dec 1;29(23):3073-9. (PMID: 24048355)
J Mol Cell Cardiol. 2020 Jul;144:63-65. (PMID: 32422320)
J Virol. 2004 Sep;78(18):9721-30. (PMID: 15331705)
Pharmacol Res. 2020 Jul;157:104849. (PMID: 32360482)
Ann Med. 2007;39(8):581-93. (PMID: 18038361)
Rev Med Virol. 2006 Nov-Dec;16(6):393-403. (PMID: 17006962)
Curr Top Microbiol Immunol. 2019;421:229-265. (PMID: 31123892)
Am J Physiol Heart Circ Physiol. 2017 May 1;312(5):H907-H918. (PMID: 28235789)
Nat Med. 2020 Jul;26(7):1017-1032. (PMID: 32651579)
Br J Pharmacol. 2009 Oct;158(4):994-1003. (PMID: 19703165)
Int J Mol Sci. 2020 Jan 14;21(2):. (PMID: 31947687)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Int J Mol Sci. 2020 May 17;21(10):. (PMID: 32429572)
FEBS Lett. 1995 Feb 20;360(1):85-8. (PMID: 7875307)
Oncogene. 1999 Dec 20;18(55):7908-16. (PMID: 10630643)
Substance Nomenclature:
0 (Anti-Inflammatory Agents, Non-Steroidal)
0 (Antiviral Agents)
0 (BAD protein, human)
0 (Proteins)
0 (bcl-Associated Death Protein)
EC 2.7.1.- (Mitogen-Activated Protein Kinase 10)
EC 2.7.11.24 (Mitogen-Activated Protein Kinase 8)
EC 3.6.5.2 (ras Proteins)
Entry Date(s):
Date Created: 20210506 Date Completed: 20210520 Latest Revision: 20231111
Update Code:
20240104
PubMed Central ID:
PMC8100301
DOI:
10.1038/s41598-021-88313-5
PMID:
33953223
Czasopismo naukowe
Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies