Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ellagic acid induces beige remodeling of white adipose tissue by controlling mitochondrial dynamics and SIRT3.

Tytuł:
Ellagic acid induces beige remodeling of white adipose tissue by controlling mitochondrial dynamics and SIRT3.
Autorzy:
Park WY; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.; Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Park J; Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Ahn KS; Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Kwak HJ; Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Republic of Korea.
Um JY; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.; Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Źródło:
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2021 Jun; Vol. 35 (6), pp. e21548.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
MeSH Terms:
Mitochondrial Dynamics*
Adipocytes, Beige/*physiology
Adipose Tissue, White/*physiology
Ellagic Acid/*pharmacology
Gene Expression Regulation/*drug effects
Sirtuin 3/*metabolism
Adipocytes, Beige/cytology ; Adipocytes, Beige/drug effects ; Adipose Tissue, White/cytology ; Adipose Tissue, White/drug effects ; Animals ; Male ; Mice ; Mice, Inbred C57BL ; Sirtuin 3/genetics ; Thermogenesis
References:
Sharma M, Li L, Celver J, Killian C, Kovoor A, Seeram NP. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt signaling. J Agric Food Chem. 2010;58:3965-3969.
Park WY, Choe S-K, Park J, Um J-Y. Black Raspberry (Rubus coreanus miquel) Promotes browning of preadipocytes and inguinal white adipose tissue in cold-induced mice. Nutrients. 2019;11:2164.
Wang L, Wei Y, Ning C, et al. Ellagic acid promotes browning of white adipose tissues in high-fat diet-induced obesity in rats through suppressing white adipocyte maintaining genes. Endocr J. 2019;66(10):923-936.
Blondin DP, Labbé SM, Tingelstad HC, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014;99:E438-E446.
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277-359.
Chu D-T, Gawronska-Kozak B. Brown and brite adipocytes: same function, but different origin and response. Biochimie. 2017;138:102-105.
Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509-1517.
Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature. 2014;510:76-83.
Mills EL, Pierce KA, Jedrychowski MP, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature. 2018;560:102-106.
Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10:24-36.
Chu DT, Tao Y, Taskén K. OPA1 in lipid metabolism: function of OPA1 in lipolysis and thermogenesis of adipocytes. Horm Metab Res. 2017;49:276-285.
Chu D-T, Tao Y. Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J Physiol Biochem. 2017;73:1-4.
Seungyoon BY, Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol. 2018;430:3922-3941.
Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14:1939-1951.
Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505-531.
Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17:491-506.
Pisani DF, Barquissau V, Chambard J-C, et al. Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Mol Metab. 2018;7:35-44.
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1-13.
Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharmacol. 2011;206:163-188.
Nogueiras R, Habegger KM, Chaudhary N, et al. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012;92(3):1479-1514.
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280:13560-13567.
Hirschey M, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44:177-190.
Sebaa R, Johnson J, Pileggi C, et al. SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab. 2019;25:35-49.
Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8:145.
Kang J, Park J, Park WY, et al. A phytoestrogen secoisolariciresinol diglucoside induces browning of white adipose tissue and activates non-shivering thermogenesis through AMPK pathway. Pharmacol Res. 2020;158:104852.
Cho SY, Lim S, Ahn KS, Kwak HJ, Park J, Um J-Y. Farnesol induces mitochondrial/peroxisomal biogenesis and thermogenesis by enhancing the AMPK signaling pathway in vivo and in vitro. Pharmacol Res. 2021;163:105312.
Liu D, Bordicchia M, Zhang C, et al. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J Clin Investig. 2016;126:1704-1716.
Townsend K, Tseng Y-H. Brown adipose tissue: recent insights into development, metabolic function and therapeutic potential. Adipocyte. 2012;1:13-24.
Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212:379-387.
Velazquez-Villegas LA, Perino A, Lemos V, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:1-13.
Cassidy-Stone A, Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14:193-204.
Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40:12-21.
Azhar Y, Parmar A, Miller CN, Samuels JS, Rayalam S. Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr Metab. 2016;13:1-11.
Paulo E, Wang B. Towards a better understanding of beige adipocyte plasticity. Cells. 2019;8:1552.
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641-648.
Frazier T, Lee S, Bowles A, et al. Gender and age-related cell compositional differences in C57BL/6 murine adipose tissue stromal vascular fraction. Adipocyte. 2018;7:183-189.
Hepler C, Shao M, Xia JY, et al. Directing visceral white adipocyte precursors to a thermogenic adipocyte fate improves insulin sensitivity in obese mice. Elife. 2017;6:e27669.
Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta. 2013;1831(5):969-985.
Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20:242-258.
Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43:533-549.
Collins S. β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol. 2012;2:102.
Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol. 2016;17:480-495.
Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145-151.
Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 2018;29:191-200.
Wu J, Boström P, Sparks L, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366-376.
Austin S, St-Pierre J. PGC1α and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012;125:4963-4971.
Lister R, Carrie C, Duncan O, et al. Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell. 2007;19:3739-3759.
Rui L. Brown and beige adipose tissues in health and disease. Compr Physiol. 2011;7:1281-1306.
Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15:279-291.
Schreiber R, Diwoky C, Schoiswohl G, et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab. 2017;26:753-763.e7.
Eichmann TO, Kumari M, Haas JT, et al. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem. 2012;287:41446-41457.
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol. 2014;5:282.
Park H, He A, Tan M, et al. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J Clin Investig. 2019;129:694-711.
Lee JH, Park A, Oh K-J, Lee SC, Kim WK, Bae K-H. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 2019;20:4924.
Chen Y-L, Fu L, Wen X, et al. Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 2014;5:e1047.
Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121-125.
Contributed Indexing:
Keywords: beige remodeling; ellagic acid; mitochondrial fission; sirtuin-3; thermogenesis
Substance Nomenclature:
0 (Sirt3 protein, mouse)
19YRN3ZS9P (Ellagic Acid)
EC 3.5.1.- (Sirtuin 3)
Entry Date(s):
Date Created: 20210506 Date Completed: 20210719 Latest Revision: 20210719
Update Code:
20240104
DOI:
10.1096/fj.202002491R
PMID:
33956354
Czasopismo naukowe
To determine whether ellagic acid (EA) induces the "beige remodeling" of white adipose tissue (WAT), we treated cold-exposed mice and mouse stromal vascular fraction (SVF) cells with EA, a phytochemical abundant in fruits and vegetables, in particular berries. We then investigated the mechanism of EA in beige remodeling with a particular focus on DRP1-mediated mitochondrial fission and SIRT3. EA induced the trans-differentiation of white adipocytes to beige adipocytes by promoting the expression of UCP1 and other brown and beige adipocytes/fat factors (PRDM16, UCP1, PGC1α, CD137, and TBX1) and mitochondrial dynamics-related factors (SIRT3, NRF1, CPT1β, DRP1, and FIS1) in 3T3-L1/SVF cells, and these were confirmed in the inguinal WAT of a cold-exposed mouse model. The browning effect of EA was abolished by a potent DRP1 inhibitor Mdivi-1 or SIRT3 knockdown, suggesting that EA induces beige remodeling of WAT by regulating the mitochondrial dynamics and SIRT3.
(© 2021 Federation of American Societies for Experimental Biology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies