Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Persistent dependent behaviour is accompanied by dynamic switching between the ventral and dorsal striatal connections in internet gaming disorder.

Tytuł:
Persistent dependent behaviour is accompanied by dynamic switching between the ventral and dorsal striatal connections in internet gaming disorder.
Autorzy:
Wang M; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
Zheng H; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Zhou W; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
Jiang Q; Department of Psychology, Zhejiang Normal University, Jinhua, China.
Dong GH; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.
Źródło:
Addiction biology [Addict Biol] 2021 Nov; Vol. 26 (6), pp. e13046. Date of Electronic Publication: 2021 May 06.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : Wiley-Blackwell
Original Publication: Abingdon, Oxfordshire, UK ; Cambridge, MA : Carfax, c1996-
MeSH Terms:
Gambling/*pathology
Internet Addiction Disorder/*pathology
Putamen/*pathology
Ventral Striatum/*pathology
Brain Mapping ; Gambling/diagnostic imaging ; Humans ; Image Processing, Computer-Assisted ; Internet Addiction Disorder/diagnostic imaging ; Magnetic Resonance Imaging ; Male ; Nucleus Accumbens/diagnostic imaging ; Nucleus Accumbens/pathology ; Putamen/diagnostic imaging ; Support Vector Machine ; Ventral Striatum/diagnostic imaging ; Young Adult
References:
Brand M, Wegmann E, Stark R, et al. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci Biobehav Rev. 2019;104:1-10.
Petry NM, O'Brien CP. Internet gaming disorder and the DSM-5. Addiction. 2013;108(7):1186-1187.
Jo YS, Bhang SY, Choi JS, Lee HK, Lee SY, Kweon Y-S. Clinical characteristics of diagnosis for internet gaming disorder: comparison of DSM-5 IGD and ICD-11 GD diagnosis. J Clin Med. 2019;8(7):945-957.
Lemmens JS, Valkenburg PM, Peter J. Psychosocial causes and consequences of pathological gaming. Comput Hum Behav. 2011;27(1):144-152.
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760-773.
Fineberg NA, Potenza MN, Chamberlain SR, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010;35(3):591-604.
Morein-Zamir S, Robbins TW. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 2015;1628:117-129.
Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458-1463.
Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci. 2008;1141:1-21.
Robinson TE, Berridge KC. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95(Suppl 2):S91-S117.
Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res. 2009;199(1):89-102.
Dalley JW, Fryer TD, Brichard L, et al. Nucleus Accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315(5816):1267-1270.
Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18(1):7-21.
Sarpal DK, Argyelan M, Robinson DG, et al. Baseline striatal functional connectivity as a predictor of response to antipsychotic drug treatment. Am J Psychiatry. 2016;173(1):69-77.
Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. In: Fiske ST, ed. Annu Rev Psychol. 2016;67:23-50.
Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev. 2013;37(9):1946-1954.
Zheng H, Hu Y, Wang Z, Wang M, Du X, Dong G. Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: similarities and differences across different paradigms. Prog Neuropsychopharmacol Biol Psychiatry. 2019;94:109656.
Yuan K, Yu D, Cai C, et al. Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol. 2017;22(3):813-822.
Wang M, Dong H, Zheng H, Du X, Dong GH. Inhibitory neuromodulation of the putamen to the prefrontal cortex in Internet gaming disorder: how addiction impairs executive control. J Behav Addict. 2020;9(2):312-324.
Liu L, Yip SW, Zhang JT, et al. Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addict Biol. 2017;22(3):791-801.
Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16(1):81-91.
Zhou X, Zimmermann K, Xin F, et al. Cue reactivity in the ventral striatum characterizes heavy cannabis use, whereas reactivity in the dorsal striatum mediates dependent use. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(8):751-762.
Lee D, Namkoong K, Lee J, Jung Y-C. Dorsal striatal functional connectivity changes in Internet gaming disorder: a longitudinal magnetic resonance imaging study. Addict Biol. 2019;26:e12868.
Dong G, Wang M, Liu X, Liang Q, Du X, Potenza MN. Cue-elicited craving-related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder. Addict Biol. 2019;25:e12713.
Chang MK, Law SPM. Factor structure for Young's Internet Addiction Test: a confirmatory study. Comput Hum Behav. 2008;24(6):2597-2619.
Petry NM, Rehbein F, Gentile DA, et al. An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction. 2014;109(9):1399-1406.
Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22-33.quiz 34-57.
Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics. 2016;14(3):339-351.
Daunizeau J, David O, Stephan KE. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage. 2011;58(2):312-322.
Dong G-H, Wang M, Zheng H, Wang Z, Du X, Potenza MN. Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: results from a cue-reactivity task. Psychol Med. 2020;1-13. Advance online publication.
Moran RJ, Stephan KE, Seidenbecher T, Pape HC, Dolan RJ, Friston KJ. Dynamic causal models of steady-state responses. Neuroimage. 2009;44(3):796-811.
Friston KJ, Kahan J, Biswal B, Razi A. A DCM for resting state fMRI. Neuroimage. 2014;94:396-407.
Razi A, Kahan J, Rees G, Friston KJ. Construct validation of a DCM for resting state fMRI. Neuroimage. 2015;106:1-14.
Zeidman P, Jafarian A, Corbin N, et al. A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage. 2019;200:174-190.
Zeidman P, Jafarian A, Seghier ML, et al. A guide to group effective connectivity analysis, part 2: second level analysis with PEB. Neuroimage. 2019;200:12-25.
Friston KJ, Litvak V, Oswal A, et al. Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage. 2016;128:413-431.
Friston KJ, Li B, Daunizeau J, Stephan KE. Network discovery with DCM. Neuroimage. 2011;56(3):1202-1221.
Friston KJ, Penny W. Post hoc Bayesian model selection. Neuroimage. 2011;56(4):2089-2099.
Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):1-27.
Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci. 2015;19(7):414-420.
Craig AD. How do you feel-now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59-70.
Akkermans SEA, Luijten M, van Rooij D, Franken IHA, Buitelaar JK. Putamen functional connectivity during inhibitory control in smokers and non-smokers. Addict Biol. 2018;23(1):359-368.
Courtney KE, Ghahremani DG, Ray LA. Fronto-striatal functional connectivity during response inhibition in alcohol dependence. Addict Biol. 2013;18(3):593-604.
Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32(1):56-67.
Sweitzer MM, Geier CF, Addicott MA, et al. Smoking abstinence-induced changes in resting state functional connectivity with ventral striatum predict lapse during a quit attempt. Neuropsychopharmacology. 2016;41(10):2521-2529.
Zhou F, Zimmermann K, Xin F, et al. Shifted balance of dorsal versus ventral striatal communication with frontal reward and regulatory regions in cannabis-dependent males. Hum Brain Mapp. 2018;39(12):5062-5073.
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-238.
Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016;19(3):404-413.
Seo S, Mohr J, Beck A, Wüstenberg T, Heinz A, Obermayer K. Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addict Biol. 2015;20(6):1042-1055.
Bedi G, Lindquist MA, Haney M. An fMRI-based neural signature of decisions to smoke cannabis. Neuropsychopharmacology. 2015;40(12):2657-2665.
Contributed Indexing:
Keywords: dynamic causal modelling; functional connectivity; internet gaming disorder; longitudinal study; machine learning; striatum
Entry Date(s):
Date Created: 20210506 Date Completed: 20220202 Latest Revision: 20220202
Update Code:
20240104
DOI:
10.1111/adb.13046
PMID:
33957705
Czasopismo naukowe
Cross-sectional studies have suggested that functional heterogeneity within the striatum in individuals with addictive behaviours may involve the transition from ventral to dorsal partitions; however, due to limitations of the cross-sectional design, whether the contribution of this transition to addiction was confused by individual differences remains unclear, especially for internet gaming disorder (IGD). Longitudinal functional magnetic resonance imaging (fMRI) data from 22 IGD subjects and 18 healthy controls were collected at baseline and more than 6 months later. We examined the connectivity features of subregions within the striatum between these two scans. Based on the results, we further performed dynamic causal modelling to explore the directional effect between regions and used these key features for data classification in machine learning to test the replicability of the results. Compared with controls, IGD subjects exhibited decreased functional connectivity between the left dorsal striatum (putamen) and the left insula, whereas connectivity between the right ventral striatum (nucleus accumbens [Nacc]) and the left insula was relatively stable over time. An inhibitory effective connectivity from the left putamen to the right Nacc was found in IGD subjects during the follow-up scan. Using the above features, the classification accuracy of the training model developed with the follow-up was better than that of the model based on the initial scan. Persistent IGD status was accompanied by a switch in the locus of control within the striatum, which provided new insights into association between IGD and drug addiction.
(© 2021 Society for the Study of Addiction.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies