Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The strength of selection is consistent across both domains of the MHC class I peptide-binding groove in birds.

Tytuł:
The strength of selection is consistent across both domains of the MHC class I peptide-binding groove in birds.
Autorzy:
Minias P; Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland. .
He K; College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China.
Dunn PO; Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA.
Źródło:
BMC ecology and evolution [BMC Ecol Evol] 2021 May 08; Vol. 21 (1), pp. 80. Date of Electronic Publication: 2021 May 08.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : BioMed Central, [2021]-
MeSH Terms:
Birds*/genetics
Polymorphism, Genetic*
Animals ; Humans ; Major Histocompatibility Complex ; Peptides ; Phylogeny
References:
Proc Biol Sci. 2014 Dec 07;281(1796):20141662. (PMID: 25339723)
Immunogenetics. 2013 Mar;65(3):211-25. (PMID: 23239370)
Mol Ecol. 2013 Jan;22(2):384-96. (PMID: 23190387)
Proc Biol Sci. 2013 Mar 20;280(1759):20130134. (PMID: 23516242)
Immunogenetics. 2009 Jun;61(6):451-61. (PMID: 19452149)
Evolution. 2002 Oct;56(10):1902-8. (PMID: 12449477)
Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62. (PMID: 2492668)
Ecol Lett. 2008 Mar;11(3):258-65. (PMID: 18070099)
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13757-62. (PMID: 11717435)
Evolution. 2018 Jun;72(6):1278-1293. (PMID: 29665025)
J Med Chem. 1998 Jul 2;41(14):2481-91. (PMID: 9651153)
Genetics. 1990 Apr;124(4):967-78. (PMID: 2323559)
Immunol Rev. 2002 Dec;190:69-85. (PMID: 12493007)
Nature. 1988 Apr 28;332(6167):845-50. (PMID: 3258651)
Proc Biol Sci. 2005 Jul 22;272(1571):1511-8. (PMID: 16011927)
Bioinformatics. 2000 Jun;16(6):562-3. (PMID: 10980155)
Genetics. 2003 Jul;164(3):1229-36. (PMID: 12871927)
Proc Biol Sci. 2011 Apr 22;278(1709):1264-72. (PMID: 20943698)
Infect Genet Evol. 2014 Jan;21:103-9. (PMID: 24200589)
Virology. 1999 Dec 20;265(2):218-25. (PMID: 10600594)
Proc Biol Sci. 2010 Apr 7;277(1684):979-88. (PMID: 20071384)
Mol Ecol. 2011 Dec;20(24):5213-25. (PMID: 22106868)
Mol Ecol. 2018 Jun;27(11):2594-2603. (PMID: 29654666)
Mol Ecol. 2018 Jul 16;:. (PMID: 30010226)
Virus Evol. 2015 May 26;1(1):vev003. (PMID: 27774277)
J Evol Biol. 2010 Mar;23(3):494-508. (PMID: 20070460)
Immunogenetics. 2011 Jun;63(6):377-94. (PMID: 21327606)
Mol Biol Evol. 2005 May;22(5):1208-22. (PMID: 15703242)
Nature. 2012 Nov 15;491(7424):444-8. (PMID: 23123857)
Immunogenetics. 1999 Mar;49(3):158-70. (PMID: 9914330)
BMC Evol Biol. 2017 Jul 05;17(1):159. (PMID: 28679358)
Genetics. 2007 Jun;176(2):1035-47. (PMID: 17409078)
AIDS Res Hum Retroviruses. 1995 Nov;11(11):1423-5. (PMID: 8573403)
Hum Immunol. 2016 Mar;77(3):233-237. (PMID: 26826444)
Mol Biol Evol. 2013 May;30(5):1196-205. (PMID: 23420840)
Evolution. 2006 Feb;60(2):383-9. (PMID: 16610328)
Nat Ecol Evol. 2018 May;2(5):841-849. (PMID: 29632357)
BMC Evol Biol. 2016 Feb 18;16:42. (PMID: 26892934)
Mol Biol Evol. 2018 Mar 1;35(3):773-777. (PMID: 29301006)
PLoS One. 2013 Aug 30;8(8):e72647. (PMID: 24023631)
Nature. 1988 Sep 8;335(6186):167-70. (PMID: 3412472)
Science. 1974 Sep 6;185(4154):862-4. (PMID: 4843792)
PLoS Genet. 2012;8(7):e1002764. (PMID: 22807683)
Nature. 1987 Oct 8-14;329(6139):512-8. (PMID: 2443855)
Mol Biol Evol. 1990 Nov;7(6):515-24. (PMID: 2283951)
Nature. 1987 Oct 8-14;329(6139):506-12. (PMID: 3309677)
Science. 2003 Sep 5;301(5638):1343. (PMID: 12958352)
PeerJ. 2013 Jun 11;1:e86. (PMID: 23781408)
PLoS Genet. 2008 Dec;4(12):e1000304. (PMID: 19081788)
Immunogenetics. 2003 Jun;55(3):133-140. (PMID: 12743657)
Proc Biol Sci. 2012 Jan 7;279(1726):153-62. (PMID: 21613297)
Bioinformatics. 2000 Jul;16(7):573-82. (PMID: 11038328)
Immunogenetics. 2017 Feb;69(2):113-124. (PMID: 27654451)
Genome Biol Evol. 2021 Feb 3;13(2):. (PMID: 33367721)
Genome Biol Evol. 2019 Jan 1;11(1):17-28. (PMID: 30476037)
J Mol Evol. 1992 Feb;34(2):126-9. (PMID: 1556748)
Biol Lett. 2006 Dec 22;2(4):543-7. (PMID: 17148284)
Contributed Indexing:
Keywords: Birds; Genomics; MHC; Major Histocompatibility Complex; Peptide-binding groove; Selection
Substance Nomenclature:
0 (Peptides)
Entry Date(s):
Date Created: 20210509 Date Completed: 20210604 Latest Revision: 20210604
Update Code:
20240105
PubMed Central ID:
PMC8106206
DOI:
10.1186/s12862-021-01812-x
PMID:
33964878
Czasopismo naukowe
Background: The Major Histocompatibility Complex (MHC) codes for the key vertebrate immune receptors responsible for pathogen recognition. Foreign antigens are recognized via their compatibility to hyper-variable region of the peptide-binding groove (PBR), which consists of two separate protein domains. Specifically, the PBR of the MHC class I receptors, which recognize intra-cellular pathogens, has two α domains encoded by exon 2 (α 1 ) and exon 3 (α 2 ) of the same gene. Most research on avian MHC class I polymorphism has traditionally focused exclusively on exon 3 and comparisons of selection between the two domains have been hampered by the scarcity of molecular data for exon 2. Thus, it is not clear whether the two domains vary in their specificity towards different antigens and whether they are subject to different selective pressure.
Results: Here, we took advantage of rapidly accumulating genomic resources to test for the differences in selection patterns between both MHC class I domains of the peptide-binding groove in birds. For this purpose, we compiled a dataset of MHC class I exon 2 and 3 sequences for 120 avian species from 46 families. Our phylogenetically-robust approach provided strong evidence for highly consistent levels of selection on the α 1 and α 2 domains. There were strong correlations in all selection measures (number of positively/negatively selected residues and dN/dS ratios) between both PBR exons. Similar positive associations were found for the level of amino acid polymorphism across the two domains.
Conclusions: We conclude that the strength of selection and the level of polymorphism are highly consistent between both peptide-binding domains (α 1 and α 2 ) of the avian MHC class I.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies