Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal-Organic Decomposition Silver Electrodes.

Tytuł:
Microstructures in All-Inkjet-Printed Textile Capacitors with Bilayer Interfaces of Polymer Dielectrics and Metal-Organic Decomposition Silver Electrodes.
Autorzy:
Kim I; Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States.
Ju B; Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States.
Zhou Y; Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States.
Li BM; Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States.
Jur JS; Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27606, United States.
Źródło:
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2021 May 26; Vol. 13 (20), pp. 24081-24094. Date of Electronic Publication: 2021 May 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society
Contributed Indexing:
Keywords: MOD silver ink; e-textiles; flexible electronics; inkjet printing; interface behavior; polymer dielectrics
Entry Date(s):
Date Created: 20210514 Latest Revision: 20210526
Update Code:
20240105
DOI:
10.1021/acsami.1c01827
PMID:
33988966
Czasopismo naukowe
Soft printed electronics exhibit unique structures and flexibilities suited for a plethora of wearable applications. However, forming scalable, reliable multilayered electronic devices with heterogeneous material interfaces on soft substrates, especially on porous and anisotropic structures, is highly challenging. In this study, we demonstrate an all-inkjet-printed textile capacitor using a multilayered structure of bilayer polymer dielectrics and particle-free metal-organic decomposition (MOD) silver electrodes. Understanding the inherent porous/anisotropic microstructure of textiles and their surface energy relationship was an important process step for successful planarization. The MOD silver ink formed a foundational conductive layer through the uniform encapsulation of individual fibers without blocking fiber interstices. Urethane-acrylate and poly(4-vinylphenol)-based bilayers were able to form a planarized dielectric layer on polyethylene terephthalate textiles. A unique chemical interaction at the interfaces of bilayer dielectrics performed a significant role in insulating porous textile substrates resulting in high chemical and mechanical durability. In this work, we demonstrate how textiles' unique microstructures and bilayer dielectric layer designs benefit reliability and scalability in the inkjet process as well as the use in wearable electronics with electromechanical performance.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies