Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

New insights into the functional role of retrotransposon dynamics in mammalian somatic cells.

Tytuł:
New insights into the functional role of retrotransposon dynamics in mammalian somatic cells.
Autorzy:
Mangiavacchi A; Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Liu P; Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Della Valle F; Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Orlando V; Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. .
Źródło:
Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2021 Jul; Vol. 78 (13), pp. 5245-5256. Date of Electronic Publication: 2021 May 14.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Publication: Basel : Springer
Original Publication: Basel ; Boston : Birkhauser, c1997-
MeSH Terms:
Epigenome*
Evolution, Molecular*
Genomic Instability*
Retroelements*
Mammals/*genetics
RNA, Untranslated/*genetics
Animals ; Humans ; Mammals/growth & development
References:
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351. https://doi.org/10.1126/science.1058040. (PMID: 10.1126/science.105804011181995)
Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562. https://doi.org/10.1038/nature01262. (PMID: 10.1038/nature01262)
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. https://doi.org/10.1038/nrg2165. (PMID: 10.1038/nrg216517984973)
Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703. https://doi.org/10.1038/nrg2640. (PMID: 10.1038/nrg2640197631522884099)
Stocking C, Kozak CA (2008) Murine endogenous retroviruses. Cell Mol Life Sci 65(21):3383–3398. https://doi.org/10.1007/s00018-008-8497-0. (PMID: 10.1007/s00018-008-8497-0188188724802364)
Gagnier L, Belancio VP, Mager DL (2019) Mouse germ line mutations due to retrotransposon insertions. Mob DNA 10:15. https://doi.org/10.1186/s13100-019-0157-4. (PMID: 10.1186/s13100-019-0157-4310113716466679)
Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G et al (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16(12):1548–1556. https://doi.org/10.1101/gr.5565706. (PMID: 10.1101/gr.5565706170773191665638)
Friedli M, Trono D (2015) The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31:429–451. https://doi.org/10.1146/annurev-cellbio-100814-125514. (PMID: 10.1146/annurev-cellbio-100814-12551426393776)
Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87(5):905–916. https://doi.org/10.1016/s0092-8674(00)81997-2. (PMID: 10.1016/s0092-8674(00)81997-28945517)
Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254(5039):1808–1810. https://doi.org/10.1126/science.1722352. (PMID: 10.1126/science.17223521722352)
Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21(2):467–475. https://doi.org/10.1128/MCB.21.2.467-475.2001. (PMID: 10.1128/MCB.21.2.467-475.20011113433586601)
Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27. https://doi.org/10.1146/annurev-genet-120213-092412. (PMID: 10.1146/annurev-genet-120213-09241225036377)
Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MC et al (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163(3):583–593. https://doi.org/10.1016/j.cell.2015.09.025. (PMID: 10.1016/j.cell.2015.09.02526496605)
Sookdeo A, Hepp CM, McClure MA, Boissinot S (2013) Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 4(1):3. https://doi.org/10.1186/1759-8753-4-3. (PMID: 10.1186/1759-8753-4-3232863743600994)
Payer LM, Burns KH (2019) Transposable elements in human genetic disease. Nat Rev Genet 20(12):760–772. https://doi.org/10.1038/s41576-019-0165-8. (PMID: 10.1038/s41576-019-0165-831515540)
Mills RE, Bennett EA, Iskow RC, Devine SE (2007) Which transposable elements are active in the human genome? Trends Genet 23(4):183–191. https://doi.org/10.1016/j.tig.2007.02.006. (PMID: 10.1016/j.tig.2007.02.00617331616)
Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35(1):41–48. https://doi.org/10.1038/ng1223. (PMID: 10.1038/ng122312897783)
Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M et al (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40(4):1666–1683. https://doi.org/10.1093/nar/gkr863. (PMID: 10.1093/nar/gkr86322053090)
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20(17):3386–3400. https://doi.org/10.1093/hmg/ddr245. (PMID: 10.1093/hmg/ddr245216365263153304)
Dewannieux M, Heidmann T (2005) L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 349(2):241–247. https://doi.org/10.1016/j.jmb.2005.03.068. (PMID: 10.1016/j.jmb.2005.03.06815890192)
Thompson PJ, Macfarlan TS, Lorincz MC (2016) Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell 62(5):766–776. https://doi.org/10.1016/j.molcel.2016.03.029. (PMID: 10.1016/j.molcel.2016.03.029272592074910160)
Varshney D, Vavrova-Anderson J, Oler AJ, Cowling VH, Cairns BR, White RJ (2015) SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 6:6569. https://doi.org/10.1038/ncomms7569. (PMID: 10.1038/ncomms756925798578)
MacLennan M, Garcia-Canadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ et al (2017) Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. Elife. https://doi.org/10.7554/eLife.26152. (PMID: 10.7554/eLife.26152288061725570191)
Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008. https://doi.org/10.7554/eLife.02008. (PMID: 10.7554/eLife.02008248430144003774)
Bestor TH, Bourc’his D (2004) Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb Symp Quant Biol 69:381–387. https://doi.org/10.1101/sqb.2004.69.381. (PMID: 10.1101/sqb.2004.69.38116117671)
Jonsson ME, Ludvik Brattas P, Gustafsson C, Petri R, Yudovich D, Pircs K et al (2019) Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun 10(1):3182. https://doi.org/10.1038/s41467-019-11150-8. (PMID: 10.1038/s41467-019-11150-8313206376639357)
Barau J, Teissandier A, Zamudio N, Roy S, Nalesso V, Herault Y et al (2016) The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354(6314):909–912. https://doi.org/10.1126/science.aah5143. (PMID: 10.1126/science.aah514327856912)
Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J et al (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55(2):277–290. https://doi.org/10.1016/j.molcel.2014.05.029. (PMID: 10.1016/j.molcel.2014.05.02924981170)
Liu S, Brind’Amour J, Karimi MM, Shirane K, Bogutz A, Lefebvre L et al (2014) Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev 28(18):2041–2055. https://doi.org/10.1101/gad.244848.114. (PMID: 10.1101/gad.244848.114252286474173156)
Pezic D, Manakov SA, Sachidanandam R, Aravin AA (2014) piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev 28(13):1410–1428. https://doi.org/10.1101/gad.240895.114. (PMID: 10.1101/gad.240895.114249398754083086)
Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799. https://doi.org/10.1016/j.molcel.2008.09.003. (PMID: 10.1016/j.molcel.2008.09.003189224632730041)
Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240. https://doi.org/10.1038/nature08674. (PMID: 10.1038/nature0867420075919)
Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD, Katzman S et al (2014) An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516(7530):242–245. https://doi.org/10.1038/nature13760. (PMID: 10.1038/nature13760252743054268317)
Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C, Duc J et al (2014) Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res 24(8):1260–1270. https://doi.org/10.1101/gr.172833.114. (PMID: 10.1101/gr.172833.114248795594120080)
Rodriguez-Terrones D, Torres-Padilla ME (2018) Nimble and ready to mingle: transposon outbursts of early development. Trends Genet 34(10):806–820. https://doi.org/10.1016/j.tig.2018.06.006. (PMID: 10.1016/j.tig.2018.06.00630057183)
Robbez-Masson L, Tie CHC, Conde L, Tunbak H, Husovsky C, Tchasovnikarova IA et al (2018) The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes. Genome Res 28(6):836–845. https://doi.org/10.1101/gr.228171.117. (PMID: 10.1101/gr.228171.117297283665991525)
Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK et al (2020) The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 11(1):5387. https://doi.org/10.1038/s41467-020-19170-5. (PMID: 10.1038/s41467-020-19170-5331445937609715)
Douse CH, Tchasovnikarova IA, Timms RT, Protasio AV, Seczynska M, Prigozhin DM et al (2020) TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Nat Commun 11(1):4940. https://doi.org/10.1038/s41467-020-18761-6. (PMID: 10.1038/s41467-020-18761-6330094117532188)
Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17(7):415–424. https://doi.org/10.1038/nrc.2017.35. (PMID: 10.1038/nrc.2017.3528642606)
Tam OH, Ostrow LW, Gale Hammell M (2019) Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob DNA 10:32. https://doi.org/10.1186/s13100-019-0176-1. (PMID: 10.1186/s13100-019-0176-1313721856659213)
Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M et al (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50(4):601–608. https://doi.org/10.1016/j.molcel.2013.04.026. (PMID: 10.1016/j.molcel.2013.04.02623706823)
Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A (2014) A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell 29(5):521–533. https://doi.org/10.1016/j.devcel.2014.04.027. (PMID: 10.1016/j.devcel.2014.04.027248823764056315)
Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM et al (2019) Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet 51(4):611–617. https://doi.org/10.1038/s41588-019-0373-3. (PMID: 10.1038/s41588-019-0373-3309269696443099)
Deniz O, Ahmed M, Todd CD, Rio-Machin A, Dawson MA, Branco MR (2020) Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat Commun 11(1):3506. https://doi.org/10.1038/s41467-020-17206-4. (PMID: 10.1038/s41467-020-17206-4326655387360734)
Jonsson ME, Garza R, Sharma Y, Petri R, Sodersten E, Johansson JG et al (2021) Activation of endogenous retroviruses during brain development causes an inflammatory response. Embo J. https://doi.org/10.15252/embj.2020106423. (PMID: 10.15252/embj.2020106423336449038090857)
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T et al (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29(4):871–885. https://doi.org/10.1016/j.cmet.2019.02.014. (PMID: 10.1016/j.cmet.2019.02.014308532136449196)
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742):73–78. https://doi.org/10.1038/s41586-018-0784-9. (PMID: 10.1038/s41586-018-0784-965199636519963)
Jonsson ME, Garza R, Johansson PA, Jakobsson J (2020) Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet 36(8):610–623. https://doi.org/10.1016/j.tig.2020.05.004. (PMID: 10.1016/j.tig.2020.05.00432499105)
Saleh A, Macia A, Muotri AR (2019) Transposable elements, inflammation, and neurological disease. Front Neurol 10:894. https://doi.org/10.3389/fneur.2019.00894. (PMID: 10.3389/fneur.2019.00894314819266710400)
Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory. Science 165(3891):349–357. https://doi.org/10.1126/science.165.3891.349. (PMID: 10.1126/science.165.3891.3495789433)
Davidson EH, Britten RJ (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204(4397):1052–1059. https://doi.org/10.1126/science.451548. (PMID: 10.1126/science.451548451548)
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H et al (2020) Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep 30(10):3296–3311. https://doi.org/10.1016/j.celrep.2020.02.048. (PMID: 10.1016/j.celrep.2020.02.048321605387195444)
Sultana T, Zamborlini A, Cristofari G, Lesage P (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18(5):292–308. https://doi.org/10.1038/nrg.2017.7. (PMID: 10.1038/nrg.2017.728286338)
Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104(19):8005–8010. https://doi.org/10.1073/pnas.0611223104. (PMID: 10.1073/pnas.0611223104174630891876562)
Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18(2):71–86. https://doi.org/10.1038/nrg.2016.139. (PMID: 10.1038/nrg.2016.13927867194)
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147. https://doi.org/10.1016/j.cell.2014.09.001. (PMID: 10.1016/j.cell.2014.09.00125242744)
Roy-Engel AM, El-Sawy M, Farooq L, Odom GL, Perepelitsa-Belancio V, Bruch H et al (2005) Human retroelements may introduce intragenic polyadenylation signals. Cytogenet Genome Res 110(1–4):365–371. https://doi.org/10.1159/000084968. (PMID: 10.1159/00008496816093688)
Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247. https://doi.org/10.1101/gad.251926.114. (PMID: 10.1101/gad.251926.114252812174201285)
Lee JY, Ji Z, Tian B (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3’-end of genes. Nucleic Acids Res 36(17):5581–5590. https://doi.org/10.1093/nar/gkn540. (PMID: 10.1093/nar/gkn540187578922553571)
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157. https://doi.org/10.1261/rna.035667.112. (PMID: 10.1261/rna.035667.1122324974723249747)
Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7(4):597–606. https://doi.org/10.1016/j.devcel.2004.09.004. (PMID: 10.1016/j.devcel.2004.09.00415469847)
Dunn CA, Medstrand P, Mager DL (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA 100(22):12841–12846. https://doi.org/10.1073/pnas.2134464100. (PMID: 10.1073/pnas.213446410014534330240706)
Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D et al (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487(7405):57–63. https://doi.org/10.1038/nature11244. (PMID: 10.1038/nature11244227228583395470)
Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM et al (2013) Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenet Chromatin 6(1):15. https://doi.org/10.1186/1756-8935-6-15. (PMID: 10.1186/1756-8935-6-15)
Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167(5):1170–1187. https://doi.org/10.1016/j.cell.2016.09.018. (PMID: 10.1016/j.cell.2016.09.018278632395123704)
Andersson R, Sandelin A (2020) Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 21(2):71–87. https://doi.org/10.1038/s41576-019-0173-8. (PMID: 10.1038/s41576-019-0173-831605096)
Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159. https://doi.org/10.1038/ng.917. (PMID: 10.1038/ng.91721946353)
Prescott SL, Srinivasan R, Marchetto MC, Grishina I, Narvaiza I, Selleri L et al (2015) Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163(1):68–83. https://doi.org/10.1016/j.cell.2015.08.036. (PMID: 10.1016/j.cell.2015.08.036263654914848043)
Ong CT, Corces VG (2012) Enhancers: emerging roles in cell fate specification. Embo Rep 13(5):423–430. https://doi.org/10.1038/embor.2012.52. (PMID: 10.1038/embor.2012.52224910323343362)
Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837. https://doi.org/10.1016/j.molcel.2013.01.038. (PMID: 10.1016/j.molcel.2013.01.03823473601)
Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459. (PMID: 10.1146/annurev-genet-110711-15545922905871)
Furlong EEM, Levine M (2018) Developmental enhancers and chromosome topology. Science 361(6409):1341–1345. https://doi.org/10.1126/science.aau0320. (PMID: 10.1126/science.aau0320302624966986801)
Cao Y, Chen G, Wu G, Zhang X, McDermott J, Chen X et al (2019) Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res 29(1):40–52. https://doi.org/10.1101/gr.235747.118. (PMID: 10.1101/gr.235747.118304551826314169)
Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24(12):1963–1976. https://doi.org/10.1101/gr.168872.113. (PMID: 10.1101/gr.168872.113253199954248313)
Ito J, Sugimoto R, Nakaoka H, Yamada S, Kimura T, Hayano T et al (2017) Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet 13(7):e1006883. https://doi.org/10.1371/journal.pgen.1006883. (PMID: 10.1371/journal.pgen.1006883287005865529029)
Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42(7):631–634. https://doi.org/10.1038/ng.600. (PMID: 10.1038/ng.60020526341)
Chuong EB, Rumi MA, Soares MJ, Baker JC (2013) Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45(3):325–329. https://doi.org/10.1038/ng.2553. (PMID: 10.1038/ng.2553233961363789077)
Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571. https://doi.org/10.1038/ng.368. (PMID: 10.1038/ng.36819377475)
Todd CD, Deniz O, Taylor D, Branco MR (2019) Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. Elife. https://doi.org/10.7554/eLife.44344. (PMID: 10.7554/eLife.44344315264716748827)
Brind’Amour J, Mager DL (2019) Reality check for transposon enhancers. Elife. https://doi.org/10.7554/eLife.47900. (PMID: 10.7554/eLife.47900311485416544458)
Fuentes DR, Swigut T, Wysocka J (2018) Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife. https://doi.org/10.7554/eLife.35989. (PMID: 10.7554/eLife.35989300706376158008)
Pontis J, Planet E, Offner S, Turelli P, Duc J, Coudray A et al (2019) Hominoid-specific transposable elements and KZFPs facilitate human embryonic genome activation and control transcription in naive human ESCs. Cell Stem Cell 24(5):724–735. https://doi.org/10.1016/j.stem.2019.03.012. (PMID: 10.1016/j.stem.2019.03.012310066206509360)
Chuong EB, Elde NC, Feschotte C (2016) Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351(6277):1083–1087. https://doi.org/10.1126/science.aad5497. (PMID: 10.1126/science.aad5497269413184887275)
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P (2018) Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2(1):152–163. https://doi.org/10.1038/s41559-017-0377-2. (PMID: 10.1038/s41559-017-0377-229180706)
Della Valle F, Thimma MP, Caiazzo M, Pulcrano S, Celii M, Adroub SA et al (2020) Transdifferentiation of mouse embryonic fibroblasts into dopaminergic neurons reactivates LINE-1 repetitive elements. Stem Cell Rep 14(1):60–74. https://doi.org/10.1016/j.stemcr.2019.12.002. (PMID: 10.1016/j.stemcr.2019.12.002)
Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME (2017) LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 49(10):1502–1510. https://doi.org/10.1038/ng.3945. (PMID: 10.1038/ng.394528846101)
Fadloun A, Le Gras S, Jost B, Ziegler-Birling C, Takahashi H, Gorab E et al (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20(3):332–338. https://doi.org/10.1038/nsmb.2495. (PMID: 10.1038/nsmb.2495)
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A et al (2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174(2):391–405. https://doi.org/10.1016/j.cell.2018.05.043. (PMID: 10.1016/j.cell.2018.05.043299372256046266)
Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N et al (2014) Stable C0T–1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156(5):907–919. https://doi.org/10.1016/j.cell.2014.01.042. (PMID: 10.1016/j.cell.2014.01.042245814924023122)
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470. https://doi.org/10.1371/journal.pgen.1003470. (PMID: 10.1371/journal.pgen.1003470236376353636048)
Petri R, Brattas PL, Sharma Y, Jonsson ME, Pircs K, Bengzon J et al (2019) LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genet 15(3):e1008036. https://doi.org/10.1371/journal.pgen.1008036. (PMID: 10.1371/journal.pgen.1008036308656256433296)
Caudron-Herger M, Pankert T, Seiler J, Nemeth A, Voit R, Grummt I et al (2015) Alu element-containing RNAs maintain nucleolar structure and function. Embo J 34(22):2758–2774. https://doi.org/10.15252/embj.201591458. (PMID: 10.15252/embj.201591458264644614682651)
Lu X, Sachs F, Ramsay L, Jacques PE, Goke J, Bourque G et al (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21(4):423–425. https://doi.org/10.1038/nsmb.2799. (PMID: 10.1038/nsmb.279924681886)
Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11(9):816–821. https://doi.org/10.1038/nsmb813. (PMID: 10.1038/nsmb81315300240)
Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11(9):822–829. https://doi.org/10.1038/nsmb812. (PMID: 10.1038/nsmb81215300239)
Tajaddod M, Tanzer A, Licht K, Wolfinger MT, Badelt S, Huber F et al (2016) Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biol 17(1):220. https://doi.org/10.1186/s13059-016-1083-0. (PMID: 10.1186/s13059-016-1083-0277828445080714)
Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509. https://doi.org/10.1016/j.molcel.2007.12.013. (PMID: 10.1016/j.molcel.2007.12.01318313387)
Zovoilis A, Cifuentes-Rojas C, Chu HP, Hernandez AJ, Lee JT (2016) Destabilization of B2 RNA by EZH2 activates the stress response. Cell 167(7):1788–1802. https://doi.org/10.1016/j.cell.2016.11.041. (PMID: 10.1016/j.cell.2016.11.041279847275552366)
Hernandez AJ, Zovoilis A, Cifuentes-Rojas C, Han L, Bujisic B, Lee JT (2020) B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proc Natl Acad Sci USA 117(1):415–425. https://doi.org/10.1073/pnas.1917190117. (PMID: 10.1073/pnas.191719011731871160)
Karijolich J, Zhao Y, Alla R, Glaunsinger B (2017) Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 45(10):6194–6208. https://doi.org/10.1093/nar/gkx180. (PMID: 10.1093/nar/gkx180283349045449642)
Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457. https://doi.org/10.1038/nature11508. (PMID: 10.1038/nature1150823064229)
Espinoza S, Scarpato M, Damiani D, Manago F, Mereu M, Contestabile A et al (2020) SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of parkinson’s disease. Mol Ther 28(2):642–652. https://doi.org/10.1016/j.ymthe.2019.08.005. (PMID: 10.1016/j.ymthe.2019.08.00531495777)
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM et al (2020) N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367(6477):580–586. https://doi.org/10.1126/science.aay6018. (PMID: 10.1126/science.aay6018319490997213019)
Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S et al (2021) m(6)A RNA methylation regulates the fate of endogenous retroviruses. Nature. https://doi.org/10.1038/s41586-020-03135-1. (PMID: 10.1038/s41586-020-03135-133442060)
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A, Kutter C et al (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148(1–2):335–348. https://doi.org/10.1016/j.cell.2011.11.058. (PMID: 10.1016/j.cell.2011.11.058222444523368268)
Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H et al (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570(7761):395–399. https://doi.org/10.1038/s41586-019-1275-3. (PMID: 10.1038/s41586-019-1275-3311680907206897)
Raviram R, Rocha PP, Luo VM, Swanzey E, Miraldi ER, Chuong EB et al (2018) Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol 19(1):216. https://doi.org/10.1186/s13059-018-1598-7. (PMID: 10.1186/s13059-018-1598-7305415986292174)
Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN et al (2019) Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet 51(9):1380–1388. https://doi.org/10.1038/s41588-019-0479-7. (PMID: 10.1038/s41588-019-0479-7314277916722002)
Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G et al (2021) Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. https://doi.org/10.1038/s41422-020-00466-6. (PMID: 10.1038/s41422-020-00466-6341086668169669)
Choudhary MN, Friedman RZ, Wang JT, Jang HS, Zhuo X, Wang T (2020) Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol 21(1):16. https://doi.org/10.1186/s13059-019-1916-8. (PMID: 10.1186/s13059-019-1916-8319737666979391)
Diehl AG, Ouyang N, Boyle AP (2020) Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat Commun 11(1):1796. https://doi.org/10.1038/s41467-020-15520-5. (PMID: 10.1038/s41467-020-15520-5322862617156512)
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096. (PMID: 10.1126/science.125809625430774)
Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010. (PMID: 10.1016/j.cell.2014.05.010249061464343198)
Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15(8):611–616. https://doi.org/10.1038/s41592-018-0048-5. (PMID: 10.1038/s41592-018-0048-5300130456129399)
Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EP et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328. https://doi.org/10.1038/nmeth.3312. (PMID: 10.1038/nmeth.3312257304904393883)
Smith CJ, Castanon O, Said K, Volf V, Khoshakhlagh P, Hornick A et al (2020) Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Res 48(9):5183–5195. https://doi.org/10.1093/nar/gkaa239. (PMID: 10.1093/nar/gkaa239323150337229841)
Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H et al (2017) Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9. Cell 170(5):899–912. (PMID: 10.1016/j.cell.2017.07.010)
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022. (PMID: 10.1016/j.cell.2013.02.022234528603664290)
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H et al (2019) Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol Cell 76(6):981–997. https://doi.org/10.1016/j.molcel.2019.10.024. (PMID: 10.1016/j.molcel.2019.10.02431757757)
Gao XD, Tu LC, Mir A, Rodriguez T, Ding Y, Leszyk J et al (2018) C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat Methods 15(6):433–436. https://doi.org/10.1038/s41592-018-0006-2. (PMID: 10.1038/s41592-018-0006-2297359966202229)
Myers SA, Wright J, Peckner R, Kalish BT, Zhang F, Carr SA (2018) Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat Methods 15(6):437–439. https://doi.org/10.1038/s41592-018-0007-1. (PMID: 10.1038/s41592-018-0007-1297359976202184)
Yi W, Li J, Zhu X, Wang X, Fan L, Sun W et al (2020) CRISPR-assisted detection of RNA-protein interactions in living cells. Nat Methods 17(7):685–688. https://doi.org/10.1038/s41592-020-0866-0. (PMID: 10.1038/s41592-020-0866-032572232)
Ramanathan M, Porter DF, Khavari PA (2019) Methods to study RNA-protein interactions. Nat Methods 16(3):225–234. https://doi.org/10.1038/s41592-019-0330-1. (PMID: 10.1038/s41592-019-0330-1308045496692137)
Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161(2):404–416. https://doi.org/10.1016/j.cell.2015.03.025. (PMID: 10.1016/j.cell.2015.03.025258436284425988)
McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521(7551):232–236. https://doi.org/10.1038/nature14443. (PMID: 10.1038/nature14443259150224516396)
Raj A, Rinn JL (2019) Illuminating genomic dark matter with RNA imaging. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032094. (PMID: 10.1101/cshperspect.a032094310434136496349)
Simon MD, Machyna M (2019) Principles and practices of hybridization capture experiments to study long noncoding RNAs that act on chromatin. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032276. (PMID: 10.1101/cshperspect.a03227631676573)
Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M et al (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteom 17(12):2534–2545. https://doi.org/10.1074/mcp.TIR118.000900. (PMID: 10.1074/mcp.TIR118.000900)
Prianichnikov N, Koch H, Koch S, Lubeck M, Heilig R, Brehmer S et al (2020) MaxQuant software for ion mobility enhanced shotgun proteomics. Mol Cell Proteom 19(6):1058–1069. https://doi.org/10.1074/mcp.TIR119.001720. (PMID: 10.1074/mcp.TIR119.001720)
Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E et al (2020) diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods 17(12):1229–1236. https://doi.org/10.1038/s41592-020-00998-0. (PMID: 10.1038/s41592-020-00998-033257825)
Werner MS, Ruthenburg AJ (2015) Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep 12(7):1089–1098. https://doi.org/10.1016/j.celrep.2015.07.033. (PMID: 10.1016/j.celrep.2015.07.033262571795697714)
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S et al (2015) Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161(3):526–540. https://doi.org/10.1016/j.cell.2015.03.027. (PMID: 10.1016/j.cell.2015.03.027259102074410947)
Drexler HL, Choquet K, Churchman LS (2020) Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol Cell 77(5):985–998. https://doi.org/10.1016/j.molcel.2019.11.017. (PMID: 10.1016/j.molcel.2019.11.01731839405)
Contributed Indexing:
Keywords: Cell identity; Development; Gene expression; Repetitive RNA; Retrotransposon
Substance Nomenclature:
0 (RNA, Untranslated)
0 (Retroelements)
Entry Date(s):
Date Created: 20210515 Date Completed: 20210709 Latest Revision: 20210718
Update Code:
20240105
PubMed Central ID:
PMC8257530
DOI:
10.1007/s00018-021-03851-5
PMID:
33990851
Czasopismo naukowe
Retrotransposons are genetic elements present across all eukaryotic genomes. While their role in evolution is considered as a potentially beneficial natural source of genetic variation, their activity is classically considered detrimental due to their potentially harmful effects on genome stability. However, studies are increasingly shedding light on the regulatory function and beneficial role of somatic retroelement reactivation in non-pathological contexts. Here, we review recent findings unveiling the regulatory potential of retrotransposons, including their role in noncoding RNA transcription, as modulators of mammalian transcriptional and epigenome landscapes. We also discuss technical challenges in deciphering the multifaceted activity of retrotransposable elements, highlighting an unforeseen central role of this neglected portion of the genome both in early development and in adult life.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies