Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Decreased Susceptibility of Marginal Odds Ratios to Finite-sample Bias.

Tytuł:
Decreased Susceptibility of Marginal Odds Ratios to Finite-sample Bias.
Autorzy:
Ross RK; From the Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC.
Cole SR
Richardson DB
Źródło:
Epidemiology (Cambridge, Mass.) [Epidemiology] 2021 Sep 01; Vol. 32 (5), pp. 648-652.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Publication: <2000>- : Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: [Cambridge, MA : Blackwell Scientific Publications ; Chestnut Hill, MA : Epidemiology Resources, c1990-
MeSH Terms:
Odds Ratio*
Bias ; Computer Simulation ; Humans ; Logistic Models ; Probability
References:
Cole SR, Chu H, Greenland S. Maximum likelihood, profile likelihood, and penalized likelihood: a primer. Am J Epidemiol. 2014;179:252–260.
Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ. 2016;352:i1981.
Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. Am J Epidemiol. 2000;151:531–539.
Johnson ME, Tolley HD, Bryson MC, Goldman AS. Covariate analysis of survival data: a small-sample study of Cox’s model. Biometrics. 1982;38:685–698.
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–1379.
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710–718.
Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64:993–1000.
van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16:163.
Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46:399–424.
Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.
Miettinen OS, Cook EF. Confounding: essence and detection. Am J Epidemiol. 1981;114:593–603.
Greenland S. Absence of confounding does not correspond to collapsibility of the rate ratio or rate difference. Epidemiology. 1996;7:498–501.
Robins JM. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model. 1986;7:1393–1512.
Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am J Epidemiol. 2011;173:731–738.
Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11:561–570.
Tsiatis AA. Semiparametric Theory and Missing Data. Springer; 2006.
Glynn AN, Quinn KM. An introduction to the augmented inverse propensity weighted estimator. Polit Anal. 2010;18:36–56.
Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168:656–664.
Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. Am J Epidemiol. 2011;173:761–767.
Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. Stat Med. 2019;38:2074–2102.
Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol. 2004;160:301–305.
Cheung YB, Ma X, Lam KF, Li J, Milligan P. Bias control in the analysis of case-control studies with incidence density sampling. Int J Epidemiol. 2019;48:1981–1991.
Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics. 2000;1:113–122.
Månsson R, Joffe MM, Sun W, Hennessy S. On the estimation and use of propensity scores in case-control and case-cohort studies. Am J Epidemiol. 2007;166:332–339.
Cole SR, Hudgens MG, Tien PC, et al. Marginal structural models for Case-Cohort Study designs to estimate the association of antiretroviral therapy initiation with incident AIDS or death. Am J Epidemiol. 2012;175:381–390.
Lee H, Hudgens MG, Cai J, Cole SR. Marginal structural cox models with case-cohort sampling. Stat Sin. 2016;26:509–526.
Rose S, van der Laan MJ. A targeted maximum likelihood estimator for two-stage designs. Int J Biostat. 2011;7:17.
Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res. 2012;21:31–54.
Grant Information:
R01 AG056479 United States AG NIA NIH HHS; R01 AI157758 United States AI NIAID NIH HHS; R01 CA242852 United States CA NCI NIH HHS; T32 HD052468 United States HD NICHD NIH HHS
Entry Date(s):
Date Created: 20210518 Date Completed: 20210929 Latest Revision: 20230908
Update Code:
20240104
PubMed Central ID:
PMC8338772
DOI:
10.1097/EDE.0000000000001370
PMID:
34001751
Czasopismo naukowe
Parameters representing adjusted treatment effects may be defined marginally or conditionally on covariates. The choice between a marginal or covariate-conditional parameter should be driven by the study question. However, an unappreciated benefit of marginal estimators is a reduction in susceptibility to finite-sample bias relative to the unpenalized maximum likelihood estimator of the covariate-conditional odds ratio (OR). Using simulation, we compare the finite-sample bias of different marginal and conditional estimators of the OR. We simulated a logistic model to have 15 events per parameter and two events per parameter. We estimated the covariate-conditional OR by maximum likelihood with and without Firth's penalization. We used three estimators of the marginal OR: g-computation, inverse probability of treatment weighting, and augmented inverse probability of treatment weighting. At 15 events per parameter, as expected, all estimators were effectively unbiased. At two events per parameter, the unpenalized covariate-conditional estimator was notably biased but penalized covariate-conditional and marginal estimators exhibited minimal bias.
Competing Interests: The authors report no conflicts of interest.
(Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies