Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications.

Tytuł:
Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications.
Autorzy:
Tshibangu-Kabamba E; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan.
Yamaoka Y; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan. .; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA. .
Źródło:
Nature reviews. Gastroenterology & hepatology [Nat Rev Gastroenterol Hepatol] 2021 Sep; Vol. 18 (9), pp. 613-629. Date of Electronic Publication: 2021 May 17.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Review
Język:
English
Imprint Name(s):
Original Publication: London ; New York : Nature Pub. Group, c2009-
MeSH Terms:
Anti-Bacterial Agents/*therapeutic use
Helicobacter Infections/*drug therapy
Helicobacter pylori/*isolation & purification
Anti-Bacterial Agents/pharmacology ; Drug Resistance, Bacterial ; Drug Resistance, Microbial ; Helicobacter Infections/microbiology ; Helicobacter pylori/drug effects ; Humans ; Microbial Sensitivity Tests
References:
Hooi, J. K. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017). (PMID: 2845663110.1053/j.gastro.2017.04.022)
Yamaoka, Y. How to eliminate gastric cancer-related death worldwide? Nat. Rev. Clin. Oncol. 15, 407–408 (2018). (PMID: 2970037810.1038/s41571-018-0029-8)
Sugano, K. et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 64, 1353–1367 (2015). (PMID: 2618750210.1136/gutjnl-2015-309252)
Shiotani, A., Lu, H., Dore, M. P. & Graham, D. Y. Treating Helicobacter pylori effectively while minimizing misuse of antibiotics. Cleve. Clin. J. Med. 84, 310 (2017). (PMID: 28388387690508110.3949/ccjm.84a.14110)
Graham D. Y. in Helicobacter pylori (eds Hunt, R. H. & Tytgat, G. N. J.) 531-537 (Springer, 1994).
Malfertheiner, P. et al. Management of Helicobacter pylori infection — the Maastricht V/Florence consensus report. Gut 66, 6–30 (2017). (PMID: 2770777710.1136/gutjnl-2016-312288)
Thung, I. et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 43, 514–533 (2016). (PMID: 2669408010.1111/apt.13497)
Kasahun, G. G., Demoz, G. T. & Desta, D. M. Primary resistance pattern of Helicobacter pylori to antibiotics in adult population: a systematic review. Infect. Drug. Resistance 13, 1567–1573 (2020). (PMID: 10.2147/IDR.S250200)
De Francesco, V. et al. Worldwide H. pylori antibiotic resistance: a systematic review. J. Gastrointest. Liver Dis. 19, 409–414 (2010).
Savoldi, A., Carrara, E., Graham, D. Y., Conti, M. & Tacconelli, E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155, 1372–1382.e17 (2018). (PMID: 2999048710.1053/j.gastro.2018.07.007)
Li, B.-Z. et al. Comparative effectiveness and tolerance of treatments for Helicobacter pylori: systematic review and network meta-analysis. BMJ 351, h4052 (2015). (PMID: 26290044454116810.1136/bmj.h4052)
Hu, Y., Zhu, Y. & Lu, N.-H. Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front. Cell. Infect. Microbiol. 7, 168 (2017). (PMID: 28529929541823710.3389/fcimb.2017.00168)
Fallone, C. A., Moss, S. F. & Malfertheiner, P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology 157, 44–53 (2019). (PMID: 3099899010.1053/j.gastro.2019.04.011)
Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018). (PMID: 2927605110.1016/S1473-3099(17)30753-3)
Tuan, V. P. et al. A next-generation sequencing-based approach to identify genetic determinants of antibiotic resistance in Cambodian Helicobacter pylori clinical isolates. J. Clin. Med. 8, 858 (2019). (PMID: 661719410.3390/jcm8060858)
Lauener, F. N. et al. Genetic determinants and prediction of antibiotic resistance phenotypes in Helicobacter pylori. J. Clin. Med. 8, 53 (2019). (PMID: 635193010.3390/jcm8010053)
Yonezawa, H., Osaki, T. & Kamiya, S. Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. Biomed Res. Int. 2015, 914791 (2015). (PMID: 26078970445250810.1155/2015/914791)
Zhang, Z., Liu, Z.-Q., Zheng, P.-Y., Tang, F.-A. & Yang, P.-C. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J. Gastroenterol. 16, 1279 (2010). (PMID: 20222174283918310.3748/wjg.v16.i10.1279)
Gong, Y. & Yuan, Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit. Rev. Microbiol. 44, 371–392 (2018). (PMID: 2929303210.1080/1040841X.2017.1418285)
Tshibangu-Kabamba, E. et al. Next-generation sequencing of the whole bacterial genome for tracking molecular insight into the broad-spectrum antimicrobial resistance of Helicobacter pylori clinical isolates from the Democratic Republic of Congo. Microorganisms 8, 887 (2020). (PMID: 735666110.3390/microorganisms8060887)
Binh, T. T. et al. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J. Antimicrob. Chemother. 69, 1796–1803 (2014). (PMID: 24648504405498410.1093/jac/dku050)
Gerrits, M. et al. Alterations in penicillin-binding protein 1A confer resistance to β-lactam antibiotics in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2229–2233 (2002). (PMID: 1206997812729310.1128/AAC.46.7.2229-2233.2002)
Nakamura, M. et al. Gastric juice, gastric tissue and blood antibiotic concentrations following omeprazole, amoxicillin and clarithromycin triple therapy. Helicobacter 8, 294–299 (2003). (PMID: 1295060110.1046/j.1523-5378.2003.00156.x)
Fallone, C. A. et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 151, 51–69.e14 (2016). (PMID: 2710265810.1053/j.gastro.2016.04.006)
Grayson, M., Eliopoulos, G., Ferraro, M. & Moellering, R. Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 8, 888–889 (1989). (PMID: 251213310.1007/BF01963775)
Zullo, A. The current role of dual therapy for treatment of Helicobacter pylori: back to the future? Eur. J. Gastroenterol. Hepatol. 32, 555–556 (2020). (PMID: 3192297710.1097/MEG.0000000000001654)
Suarez, C. & Gudiol, F. Beta-lactam antibiotics [Spanish]. Enferm. Infecc. Microbiol. Clin. 27, 116–129 (2009). (PMID: 19254642)
Livermore, D. M. beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557–584 (1995). (PMID: 866547017287610.1128/CMR.8.4.557)
Gerrits, M. M. et al. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 11, 181–187 (2006). (PMID: 1668426610.1111/j.1523-5378.2006.00398.x)
Okamoto, T. et al. A change in PBP1 is involved in amoxicillin resistance of clinical isolates of Helicobacter pylori. J. Antimicrob. Chemother. 50, 849–856 (2002). (PMID: 1246100310.1093/jac/dkf140)
Rimbara, E., Noguchi, N., Kawai, T. & Sasatsu, M. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J. Antimicrob. Chemother. 61, 995–998 (2008). (PMID: 1827659910.1093/jac/dkn051)
Hu, Y., Zhang, M., Lu, B. & Dai, J. Helicobacter pylori and antibiotic resistance, a continuing and intractable problem. Helicobacter 21, 349–363 (2016). (PMID: 2682234010.1111/hel.12299)
Kwon, D. H. et al. High-level β-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47, 2169–2178 (2003). (PMID: 1282146416185510.1128/AAC.47.7.2169-2178.2003)
DeLoney, C. R. & Schiller, N. L. Characterization of an in vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob. Agents Chemother. 44, 3368–3373 (2000). (PMID: 110836429020710.1128/AAC.44.12.3368-3373.2000)
Dore, M. P. et al. Amoxycillin tolerance in Helicobacter pylori. J. Antimicrob. Chemother. 43, 47–54 (1999). (PMID: 1038110010.1093/jac/43.1.47)
Drusano, G. et al. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin. Microbiol. Infect. 4, 2S27–2S41 (1998). (PMID: 10.1111/j.1469-0691.1998.tb00692.x)
Correia, S., Poeta, P., Hébraud, M., Capelo, J. L. & Igrejas, G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559 (2017). (PMID: 2850492710.1099/jmm.0.000475)
Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014). (PMID: 2457615510.1021/bi5000564)
Moore, R. A., Beckthold, B., Wong, S., Kureishi, A. & Bryan, L. E. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 39, 107–111 (1995). (PMID: 769529016249410.1128/AAC.39.1.107)
Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. Acquisition of double mutation in gyrA caused high resistance to sitafloxacin in Helicobacter pylori after unsuccessful eradication with sitafloxacin-containing regimens. United European Gastroenterol. J. 6, 391–397 (2018). (PMID: 2977415210.1177/2050640617737215)
Miyachi, H. et al. Primary levofloxacin resistance and gyrA/B mutations among Helicobacter pylori Japan. Helicobacter 11, 243–249 (2006). (PMID: 1688232710.1111/j.1523-5378.2006.00415.x)
Rodvold, K. A. Clinical pharmacokinetics of clarithromycin. Clin. pharmacokinet. 37, 385–398 (1999). (PMID: 1058937310.2165/00003088-199937050-00003)
Erah, P., Goddard, A., Barrett, D., Shaw, P. & Spiller, R. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J. Antimicrob. Chemother. 39, 5–12 (1997). (PMID: 904402110.1093/jac/39.1.5)
Gaynor, M. & Mankin, A. S. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top. Med. Chem. 3, 949–960 (2003). (PMID: 1267883110.2174/1568026033452159)
Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477–480 (1996). (PMID: 883490316313910.1128/AAC.40.2.477)
Hao, Q., Li, Y., Zhang, Z.-J., Liu, Y. & Gao, H. New mutation points in 23S rRNA gene associated with Helicobacter pylori resistance to clarithromycin in northeast China. World J. Gastroenterol. 10, 1075 (2004). (PMID: 15052698471710410.3748/wjg.v10.i7.1075)
Debets-Ossenkopp, Y., Namavar, F. & MacLaren, D. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 14, 353–355 (1995). (PMID: 764920210.1007/BF02116532)
Dingsdag, S. A. & Hunter, N. Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 73, 265–279 (2018). (PMID: 2907792010.1093/jac/dkx351)
Hoffman, P. S., Goodwin, A., Johnsen, J., Magee, K. & van Zanten, S. V. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 178, 4822–4829 (1996). (PMID: 875984417826310.1128/jb.178.16.4822-4829.1996)
Kwon, D.-H. et al. Analysis of RdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Antimicrob. Agents Chemother. 44, 2133–2142 (2000). (PMID: 108986879002510.1128/AAC.44.8.2133-2142.2000)
Kwon, D. H., Kato, M., El-Zaatari, F. A., Osato, M. S. & Graham, D. Y. Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (FrxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol. Lett. 188, 197–202 (2000). (PMID: 1091370510.1111/j.1574-6968.2000.tb09193.x)
Martínez-Júlvez, M. et al. Structure of RdxA–an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. FEBS J. 279, 4306–4317 (2012). (PMID: 23039228350463710.1111/febs.12020)
Goodwin, A. et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (RdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 28, 383–393 (1998). (PMID: 962236210.1046/j.1365-2958.1998.00806.x)
Sisson, G. et al. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA (nitroreductase) gene. J. Bacteriol. 182, 5091–5096 (2000). (PMID: 109600929465610.1128/JB.182.18.5091-5096.2000)
Jeong, J.-Y. et al. Sequential inactivation of RdxA (HP0954) and FrxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J. Bacteriol. 182, 5082–5090 (2000). (PMID: 109600919465510.1128/JB.182.18.5082-5090.2000)
Albert, T. J. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods 2, 951–953 (2005). (PMID: 1629948010.1038/nmeth805)
Smith, M. A. & Edwards, D. I. Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 39, 347–353 (1997). (PMID: 909618410.1093/jac/39.3.347)
Choi, S. S., Chivers, P. T. & Berg, D. E. Point mutations in Helicobacter pylori’s fur regulatory gene that alter resistance to metronidazole, a prodrug activated by chemical reduction. PLoS ONE 6, e18236 (2011). (PMID: 21464913306467310.1371/journal.pone.0018236)
Chang, K.-C., Ho, S.-W., Yang, J.-C. & Wang, J.-T. Isolation of a genetic locus associated with metronidazole resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 236, 785–788 (1997). (PMID: 924573410.1006/bbrc.1997.7050)
Thompson, S. A. & Blaser, M. J. Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect. Immun. 63, 2185–2193 (1995). (PMID: 776859717328410.1128/iai.63.6.2185-2193.1995)
Tsugawa, H. et al. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochem. biophys. Res. Commun. 404, 656–660 (2011). (PMID: 2114706410.1016/j.bbrc.2010.12.034)
Tsugawa, H. et al. Two amino acids mutation of ferric uptake regulator determines Helicobacter pylori resistance to metronidazole. Antioxid. Redox Signal. 14, 15–23 (2011). (PMID: 2051870710.1089/ars.2010.3146)
Tsugawa, H., Suzuki, H., Matsuzaki, J., Hirata, K. & Hibi, T. FecA1, a bacterial iron transporter, determines the survival of Helicobacter pylori in the stomach. Free Radic. Biol. Med. 52, 1003–1010 (2012). (PMID: 2224509110.1016/j.freeradbiomed.2011.12.011)
Lacey, S., Moss, S. & Taylor, G. Metronidazole uptake by sensitive and resistant isolates of Helicobacter pylori. J. Antimicrob. Chemother. 32, 393–400 (1993). (PMID: 826286110.1093/jac/32.3.393)
Moore, R. A., Beckthold, B. & Bryan, L. Metronidazole uptake in Helicobacter pylori. Can. J. Microbiol. 41, 746–749 (1995). (PMID: 755345610.1139/m95-102)
Graham, D. Y. Antibiotic resistance in Helicobacter pylori: implications for therapy. Gastroenterology 115, 1272–1277 (1998). (PMID: 979738410.1016/S0016-5085(98)70100-3)
Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001). (PMID: 113811019902610.1128/MMBR.65.2.232-260.2001)
Ross, J. I., Eady, E. A., Cove, J. H. & Cunliffe, W. J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42, 1702–1705 (1998). (PMID: 966100710566910.1128/AAC.42.7.1702)
Dailidiene, D. et al. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob. Agents Chemother. 46, 3940–3946 (2002). (PMID: 1243569913277810.1128/AAC.46.12.3940-3946.2002)
Gerrits, M. M., de Zoete, M. R., Arents, N. L., Kuipers, E. J. & Kusters, J. G. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2996–3000 (2002). (PMID: 1218325912740610.1128/AAC.46.9.2996-3000.2002)
Wu, J. Y. et al. Tetracycline-resistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes. Antimicrob. Agents Chemother. 49, 578–583 (2005). (PMID: 1567373654722110.1128/AAC.49.2.578-583.2005)
Aristoff, P. A., Garcia, G. A., Kirchhoff, P. D. & Showalter, H. H. Rifamycins–obstacles and opportunities. Tuberculosis 90, 94–118 (2010). (PMID: 2023686310.1016/j.tube.2010.02.001)
Finch, C. K., Chrisman, C. R., Baciewicz, A. M. & Self, T. H. Rifampin and rifabutin drug interactions: an update. Arch. Intern. Med. 162, 985–992 (2002). (PMID: 1199660710.1001/archinte.162.9.985)
Mori, H. et al. Rifabutin-based 10-day and 14-day triple therapy as a third-line and fourth-line regimen for Helicobacter pylori eradication: a pilot study. United European Gastroenterol. J. 4, 380–387 (2016). (PMID: 2740330410.1177/2050640615618043)
Gisbert, J. P. & Pajares, J. M. Helicobacter pylori “rescue” therapy after failure of two eradication treatments. Helicobacter 10, 363–372 (2005). (PMID: 1618134510.1111/j.1523-5378.2005.00324.x)
Nishizawa, T. et al. Helicobacter pylori resistance to rifabutin in the last 7 years. Antimicrob. Agents Chemother. 55, 5374–5375 (2011). (PMID: 21896915319502110.1128/AAC.05437-11)
Kunin, C. M. Antimicrobial activity of rifabutin. Clin. Infect. Dis. 22, S3–S14 (1996). (PMID: 878525310.1093/clinids/22.Supplement_1.S3)
Heep, M., Beck, D., Bayerdörffer, E. & Lehn, N. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob. Agents Chemother. 43, 1497–1499 (1999). (PMID: 103487808930610.1128/AAC.43.6.1497)
Heep, M., Rieger, U., Beck, D. & Lehn, N. Mutations in the beginning of the rpoBGene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44, 1075–1077 (2000). (PMID: 107225168981710.1128/AAC.44.4.1075-1077.2000)
Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. 10-Year trends in Helicobacter pylori eradication rates by sitafloxacin-based third-line rescue therapy. Digestion 101, 644–650 (2019). (PMID: 3138710710.1159/000501610)
Siavoshi, F., Saniee, P. & Malekzadeh, R. Effective antimicrobial activity of rifabutin against multidrug-resistant Helicobacter pylori. Helicobacter 23, e12531 (2018). (PMID: 3023063710.1111/hel.12531)
Chey, W. D., Leontiadis, G. I., Howden, C. W. & Moss, S. F. ACG Clinical Guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol. 112, 212–239 (2017). (PMID: 2807165910.1038/ajg.2016.563)
Sisson, G. et al. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrobial agents chemotherapy 46, 2116–2123 (2002). (PMID: 1206996312731610.1128/AAC.46.7.2116-2123.2002)
Su, Z. et al. Mutations in Helicobacter pylori porD and oorD genes may contribute to furazolidone resistance. Croatian Med. J. 47, 410–415 (2006).
Buzás, G. M. & Józan, J. Nitrofuran-based regimens for the eradication of Helicobacter pylori infection. J. Gastroenterol. Hepatol. 22, 1571–1581 (2007). (PMID: 1784568510.1111/j.1440-1746.2007.05082.x)
Shao, Y. et al. Antibiotic resistance of Helicobacter pylori to 16 antibiotics in clinical patients. J. Clin. Lab. Anal. 32, e22339 (2018). (PMID: 2898438510.1002/jcla.22339)
Moghaddam, A. B. et al. Sensitivity to nitazoxanide among metronidazole resistant Helicobacter pylori strains in patients with gastritis. Med. J. Islamic Repub. Iran. 30, 405 (2016).
Lee, S., Sneed, G. T. & Brown, J. N. Treatment of Helicobacter pylori with nitazoxanide-containing regimens: a systematic review. Infect. Dis. 52, 381–390 (2020). (PMID: 10.1080/23744235.2019.1708454)
Ji, C.-R. et al. Safety of furazolidone-containing regimen in Helicobacter pylori infection: a systematic review and meta-analysis. BMJ open. 10, e037375 (2020). (PMID: 33077561757494810.1136/bmjopen-2020-037375)
Zhuge, L. et al. Furazolidone treatment for Helicobacter pylori infection: a systematic review and meta-analysis. Helicobacter 23, e12468 (2018). (PMID: 2948053210.1111/hel.12468)
Graham, D. Y. & Lu, H. Furazolidone in Helicobacter pylori therapy: misunderstood and often unfairly maligned drug told in a story of French bread. Saudi J. Gastroenterol. 18, 1–2 (2012). (PMID: 22249084327168610.4103/1319-3767.91724)
EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on nitrofurans and their metabolites in food. EFSA J. 13, 4140 (2015).
International Agency for Research on Cancer (IARC). IARC monographs on the identification of carcinogenic hazards to humans. (World Health Organization, 2019).
Zullo, A., Ierardi, E., Hassan, C. & De Francesco, V. Furazolidone-based therapies for Helicobacter pylori infection: a pooled-data analysis. Saudi J. Gastroenterol. 18, 11–17 (2012). (PMID: 22249086327168710.4103/1319-3767.91729)
Boyanova, L., Hadzhiyski, P., Kandilarov, N., Markovska, R. & Mitov, I. Multidrug resistance in Helicobacter pylori: current state and future directions. Expert Rev. Clin. Pharmacol. 12, 909–915 (2019). (PMID: 3142429610.1080/17512433.2019.1654858)
Hirata, K. et al. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S75–S79 (2010). (PMID: 2058687110.1111/j.1440-1746.2009.06220.x)
Ge, X. et al. Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). Antimicrob. Agents Chemother. 62, e00957-18 (2018).
Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. 101, 9417–9422 (2004). (PMID: 1519214843899110.1073/pnas.0402340101)
Stark, R. et al. Biofilm formation by Helicobacter pylori. Lett. Appl. Microbiol. 28, 121–126 (1999). (PMID: 1006364210.1046/j.1365-2672.1999.00481.x)
Cole, S. P., Harwood, J., Lee, R., She, R. & Guiney, D. G. Characterization of monospecies biofilm formation by Helicobacter pylori. J. Bacteriol. 186, 3124–3132 (2004). (PMID: 1512647440060010.1128/JB.186.10.3124-3132.2004)
Carron, M. A., Tran, V. R., Sugawa, C. & Coticchia, J. M. Identification of Helicobacter pylori biofilms in human gastric mucosa. J. Gastrointest. Surg. 10, 712–717 (2006). (PMID: 1671354410.1016/j.gassur.2005.10.019)
Yonezawa, H. et al. Assessment of in vitro biofilm formation by Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S90–S94 (2010). (PMID: 2058687410.1111/j.1440-1746.2009.06213.x)
Cellini, L. et al. Dynamic colonization of Helicobacter pylori in human gastric mucosa. Scand. J. Gastroenterol. 43, 178–185 (2008). (PMID: 1791800410.1080/00365520701675965)
Greene, C., Vadlamudi, G., Newton, D., Foxman, B. & Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control. 44, e65–e71 (2016). (PMID: 26851196699353010.1016/j.ajic.2015.12.012)
Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012). (PMID: 2244430110.1111/j.1574-695X.2012.00960.x)
Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923 (2006). (PMID: 16751497148963010.1128/AEM.03022-05)
Huang, J. Y., Goers Sweeney, E., Guillemin, K. & Amieva, M. R. Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLoS Pathog. 13, e1006118 (2017). (PMID: 28103315524578910.1371/journal.ppat.1006118)
Mackay, W., Gribbon, L., Barer, M. & Reid, D. Biofilms in drinking water systems: a possible reservoir for Helicobacter pylori. J. Appl. Microbiol. 85, 52S–59S (1998). (PMID: 2118269310.1111/j.1365-2672.1998.tb05283.x)
Berry, V., Jennings, K. & Woodnutt, G. Bactericidal and morphological effects of amoxicillin on Helicobacter pylori. Antimicrob. Agents Chemother. 39, 1859–1861 (1995). (PMID: 748693316284010.1128/AAC.39.8.1859)
Bode, G., Mauch, F. & Malfertheiner, P. The coccoid forms of Helicobacter pylori. Criteria for their viability. Epidemiol. Infect. 111, 483–490 (1993). (PMID: 8270008227126510.1017/S0950268800057216)
Sarem, M. & Corti, R. Role of Helicobacter pylori coccoid forms in infection and recrudescence. Gastroenterol. Hepatol. 39, 28–35 (2016). (PMID: 2608922910.1016/j.gastrohep.2015.04.009)
Kadkhodaei, S., Siavoshi, F. & Akbari Noghabi, K. Mucoid and coccoid Helicobacter pylori with fast growth and antibiotic resistance. Helicobacter 25, e12678 (2020). (PMID: 3188000110.1111/hel.12678)
Hathroubi, S., Servetas, S. L., Windham, I., Merrell, D. S. & Ottemann, K. M. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol. Mol. Biol. Rev. 82, e00001-18 (2018).
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019). (PMID: 3123588810.1038/s41579-019-0218-1)
Falagas, M., Makris, G., Dimopoulos, G. & Matthaiou, D. Heteroresistance: a concern of increasing clinical significance? Clin. Microbiol. Infect. 14, 101–104 (2008). (PMID: 1809323510.1111/j.1469-0691.2007.01912.x)
Li, J. et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 50, 2946–2950 (2006). (PMID: 16940086156354410.1128/AAC.00103-06)
Ailloud, F. et al. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 1–13 (2019). (PMID: 10.1038/s41467-019-10050-1)
Sun, L. et al. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance. J. Clin. Microbiol. 56, e00019-18 (2018).
Kocsmár, É. et al. Helicobacter pylori heteroresistance to clarithromycin in adults – New data by in situ detection and improved concept. Helicobacter 25, e12670 (2020). (PMID: 3170160810.1111/hel.12670)
Kao, C.-Y. et al. Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. Infect. Genet. Evol. 23, 196–202 (2014). (PMID: 2457653410.1016/j.meegid.2014.02.009)
Hamidi, S. et al. Antibiotic resistance and clonal relatedness of Helicobacter pylori strains isolated from stomach biopsy specimens in northeast of Iran. Helicobacter 25, e12684 (2020). (PMID: 3207466410.1111/hel.12684)
Rizvanov, A., Haertlé, T., Bogomolnaya, L. & Talebi Bezmin Abadi, A. Helicobacter pylori and its antibiotic heteroresistance: a neglected issue in published guidelines. Front. Microbiol. 10, 1796 (2019). (PMID: 31456763670036310.3389/fmicb.2019.01796)
Arévalo-Jaimes, B. V. et al. Genotypic determination of resistance and heteroresistance to clarithromycin in Helicobacter pylori isolates from antrum and corpus of Colombian symptomatic patients. BMC Infect. Dis. 19, 546 (2019). (PMID: 31226948658724510.1186/s12879-019-4178-x)
Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008). (PMID: 1819268110.1093/jac/dkm504)
Alebouyeh, M. et al. Impacts of H. pylori mixed-infection and heteroresistance on clinical outcomes. Gastroenterol. Hepatol. Bed Bench 8, S1–S5 (2015). (PMID: 261711324495421)
Kim, J. J., Kim, J. G. & Kwon, D. H. Mixed-infection of antibiotic susceptible and resistant Helicobacter pylori isolates in a single patient and underestimation of antimicrobial susceptibility testing. Helicobacter 8, 202–206 (2003). (PMID: 1275273210.1046/j.1523-5378.2003.00145.x)
Farzi, N. et al. Characterization of clarithromycin heteroresistance among Helicobacter pylori strains isolated from the antrum and corpus of the stomach. Folia Microbiol. 64, 143–151 (2019). (PMID: 10.1007/s12223-018-0637-9)
Dore, M. P., Leandro, G., Realdi, G., Sepulveda, A. R. & Graham, D. Y. Effect of pretreatment antibiotic resistance to metronidazole and clarithromycin on outcome of Helicobacter pylori therapy. Dig. Dis. Sci. 45, 68–76 (2000). (PMID: 1069561610.1023/A:1005457226341)
Fischbach, L. & Evans, E. L. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment. Pharmacol. Ther. 26, 343–357 (2007). (PMID: 1763536910.1111/j.1365-2036.2007.03386.x)
Gisbert, J. P. & Calvet, X. Update on non-bismuth quadruple (concomitant) therapy for eradication of Helicobacter pylori. Clin. Exp. Gastroenterol. 5, 23 (2012). (PMID: 22457599330863310.2147/CEG.S25419)
Greenberg, E. R. et al. 14-day triple, 5-day concomitant, and 10-day sequential therapies for Helicobacter pylori infection in seven Latin American sites: a randomised trial. Lancet 378, 507–514 (2011). (PMID: 21777974331346910.1016/S0140-6736(11)60825-8)
Luther, J. et al. Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: systematic review and meta-analysis of efficacy and tolerability. Am. J. Gastroenterol. 105, 65–73 (2010). (PMID: 1975596610.1038/ajg.2009.508)
Zou, Y. et al. The effect of antibiotic resistance on Helicobacter pylori eradication efficacy: a systematic review and meta-analysis. Helicobacter 25, e12714 (2020). (PMID: 3253359910.1111/hel.12714)
Malfertheiner, P. et al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial. Lancet 377, 905–913 (2011). (PMID: 2134548710.1016/S0140-6736(11)60020-2)
Smith, S. M., O’Morain, C. & McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol. 20, 9912 (2014). (PMID: 25110421412337210.3748/wjg.v20.i29.9912)
Mégraud, F. & Lehours, P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin. Microbiol. Rev. 20, 280–322 (2007). (PMID: 17428887186559410.1128/CMR.00033-06)
Debets-Ossenkopp, Y., Brinkman, A., Kuipers, E., Vandenbroucke-Grauls, C. & Kusters, J. Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates of Helicobacter pylori. Antimicrob. Agents Chemother. 42, 2749–2751 (1998). (PMID: 975679010593210.1128/AAC.42.10.2749)
Dore, M. P. et al. Amoxycillin resistance is one reason for failure of amoxycillin-omeprazole treatment of Helicobacter pylori infection. Aliment. Pharmacol. ther. 12, 635–639 (1998). (PMID: 970152610.1046/j.1365-2036.1998.00350.x)
Ecclissato, C. et al. Increased primary resistance to recommended antibiotics negatively affects Helicobacter pylori eradication. Helicobacter 7, 53–59 (2002). (PMID: 1188647410.1046/j.1523-5378.2002.00056.x)
Trieber, C. A. & Taylor, D. E. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol. 184, 2131–2140 (2002). (PMID: 1191434413497310.1128/JB.184.8.2131-2140.2002)
Realdi, G. et al. Pretreatment antibiotic resistance in Helicobacter pylori infection: results of three randomized controlled studies. Helicobacter 4, 106–112 (1999). (PMID: 1038212410.1046/j.1523-5378.1999.99002.x)
Nishizawa, T. et al. Enhancement of amoxicillin resistance after unsuccessful Helicobacter pylori eradication. Antimicrob. Agents Chemother. 55, 3012–3014 (2011). (PMID: 21486961310145910.1128/AAC.00188-11)
Graham, D. Y., Lee, Y. C. & Wu, M. S. Rational Helicobacter pylori therapy: evidence-based medicine rather than medicine-based evidence. Clin. Gastroenterol. Hepatol. 12, 177–186.e3 (2014). (PMID: 2375128210.1016/j.cgh.2013.05.028)
Noach, L., Rolf, T. & Tytgat, G. Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa. J. Clin. Pathol. 47, 699–704 (1994). (PMID: 796261950213910.1136/jcp.47.8.699)
De Francesco, V. et al. Role of MIC levels of resistance to clarithromycin and metronidazole in Helicobacter pylori eradication. J. Antimicrob. Chemother. 74, 772–774 (2019). (PMID: 3047613410.1093/jac/dky469)
Graham, D. Y. et al. Factors influencing the eradication of Helicobacter pylori with triple therapy. Gastroenterology 102, 493–496 (1992). (PMID: 173212010.1016/0016-5085(92)90095-G)
Buring, S. M., Winner, L. H., Hatton, R. C. & Doering, P. L. Discontinuation rates of Helicobacter pylori treatment regimens: a meta-analysis. Pharmacotherapy 19, 324–332 (1999). (PMID: 1022137010.1592/phco.19.4.324.30939)
Tang, H.-L., Li, Y., Hu, Y.-F., Xie, H.-G. & Zhai, S.-D. Effects of CYP2C19 loss-of-function variants on the eradication of H. pylori infection in patients treated with proton pump inhibitor-based triple therapy regimens: a meta-analysis of randomized clinical trials. PLoS ONE 8, e62162 (2013). (PMID: 23646118363997810.1371/journal.pone.0062162)
Horikawa, C. et al. High risk of failing eradication of Helicobacter pylori in patients with diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 106, 81–87 (2014). (PMID: 2511010310.1016/j.diabres.2014.07.009)
Kaneko, F. et al. High prevalence rate of Helicobacter pylori resistance to clarithromycin during long-term multiple antibiotic therapy for chronic respiratory disease cause by nontuberculous mycobacteria. Aliment. Pharmacol. Ther. 20 (Suppl. 1), 62–67 (2004). (PMID: 1529860710.1111/j.1365-2036.2004.01993.x)
Adamsson, I., Edlund, C. & Nord, C. Impact of treatment of Helicobacter pylori on the normal gastrointestinal microflora. Clin. Microbiol. Infect. 6, 175–177 (2000). (PMID: 1116810410.1111/j.1469-0691.2000.00028.x)
Jakobsson, H. et al. Macrolide resistance in the normal microbiota after Helicobacter pylori treatment. Scand. J. Infect. Dis. 39, 757–763 (2007). (PMID: 1770171210.1080/00365540701299608)
Chen, L. et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: an open-label, randomized clinical trial. EBioMedicine 35, 87–96 (2018). (PMID: 30145102616147310.1016/j.ebiom.2018.08.028)
Yang, L. et al. Helicobacter pylori infection aggravates dysbiosis of gut microbiome in children with gastritis. Front. Cell. Infect. Microbiol. 9, 375 (2019). (PMID: 31781514685980310.3389/fcimb.2019.00375)
Wu, L. et al. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer. Sci. Rep. 9, 12874 (2019). (PMID: 31492912673129610.1038/s41598-019-49415-3)
Iino, C. et al. Infection of Helicobacter pylori and atrophic gastritis influence Lactobacillus in gut microbiota in a Japanese population. Front. Immunol. 9, 712 (2018). (PMID: 29681906589742810.3389/fimmu.2018.00712)
Guo, Y. et al. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut 69, 1598–1607 (2020). (PMID: 3185743310.1136/gutjnl-2019-319696)
Megraud, F. Resistance of Helicobacter pylori to antibiotics. Aliment. Pharmacol. Ther. 11, 43–53 (1997). (PMID: 914679010.1046/j.1365-2036.11.s1.11.x)
Hombach, M., Zbinden, R. & Böttger, E. C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiol. 13, 225 (2013). (PMID: 24099061385224810.1186/1471-2180-13-225)
Smith, S., Fowora, M. & Pellicano, R. Infections with Helicobacter pylori and challenges encountered in Africa. World J. Gastroenterol. 25, 3183 (2019). (PMID: 31333310662672710.3748/wjg.v25.i25.3183)
Şen, N., Yilmaz, Ö., Şımşek, İ., Küpelıoğlu, A. A. & Ellıdokuz, H. Detection of Helicobacter pylori DNA by a simple stool PCR method in adult dyspeptic patients. Helicobacter 10, 353–359 (2005). (PMID: 1610495210.1111/j.1523-5378.2005.00326.x)
Clayton, C., Kleanthous, H., Coates, P., Morgan, D. & Tabaqchali, S. Sensitive detection of Helicobacter pylori by using polymerase chain reaction. J. Clin. Microbiol. 30, 192–200 (1992). (PMID: 173405226501910.1128/jcm.30.1.192-200.1992)
van Doorn, L.-J. et al. Accurate prediction of macrolide resistance in Helicobacter pylori by a PCR line probe assay for detection of mutations in the 23S rRNA gene: multicenter validation study. Antimicrob. Agents Chemother. 45, 1500–1504 (2001). (PMID: 113028179049510.1128/AAC.45.5.1500-1504.2001)
Schabereiter-Gurtner, C. et al. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 42, 4512–4518 (2004). (PMID: 1547230252230110.1128/JCM.42.10.4512-4518.2004)
Mitui, M., Patel, A., Leos, N. K., Doern, C. D. & Park, J. Y. Novel Helicobacter pylori sequencing test identifies high rate of clarithromycin resistance. J. Pediatric Gastroenterol. Nutr. 59, 6–9 (2014). (PMID: 10.1097/MPG.0000000000000380)
Rüssmann, H. et al. Rapid and accurate determination of genotypic clarithromycin resistance in cultured Helicobacter pylori by fluorescent in situ hybridization. J. Clin. Microbiol. 39, 4142–4144 (2001). (PMID: 116825438850010.1128/JCM.39.11.4142-4144.2001)
Nishizawa, T. & Suzuki, H. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing. Front. Mol. Biosci. 1, 19 (2014). (PMID: 25988160442847210.3389/fmolb.2014.00019)
Nishizawa, T. et al. Rapid detection of point mutations conferring resistance to fluoroquinolone in gyrA of Helicobacter pylori by allele-specific PCR. J. Clin. Microbiol. 45, 303–305 (2007). (PMID: 1712202310.1128/JCM.01997-06)
Patel, S. K., Pratap, C. B., Jain, A. K., Gulati, A. K. & Nath, G. Diagnosis of Helicobacter pylori: what should be the gold standard? World J. Gastroenterol. 20, 12847–12859 (2014). (PMID: 25278682417746710.3748/wjg.v20.i36.12847)
Ciesielska, U., Jagoda, E. & Marciniak, Z. Value of PCR technique in detection of Helicobacter pylori in paraffin-embedded material. Folia Histochem. Cytobiol. 40, 129–130 (2002). (PMID: 12056609)
Maljkovic, I. B. et al. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: approaches, applications, and considerations for development of laboratory capacity. J. Infect. Dis. 221 (Suppl. 3), 292–307 (2020).
Hendriksen, R. S. et al. Using genomics to track global antimicrobial resistance. Front. Public Health 7, 242 (2019). (PMID: 31552211673758110.3389/fpubh.2019.00242)
Su, M., Satola, S. W. & Read, T. D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 57, e01405-18 (2019).
Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018). (PMID: 2912992110.1038/nrg.2017.88)
Goldberg, B., Sichtig, H., Geyer, C., Ledeboer, N. & Weinstock, G. M. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6, e01888-15e01888-15 (2015).
MacCannell, D. Next generation sequencing in clinical and public health microbiology. Clin. Microbiol. Newsl. 38, 169–176 (2016). (PMID: 10.1016/j.clinmicnews.2016.10.001)
Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020). (PMID: 32042169728304210.1038/s41587-020-0422-6)
D’Elios, M. M. & Czinn, S. J. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter 19, 19–26 (2014). (PMID: 2516794110.1111/hel.12156)
Zeng, M. et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1457–1464 (2015). (PMID: 2614204810.1016/S0140-6736(15)60310-5)
Graham, D. Y. & Dore, M. P. Helicobacter pylori therapy: a paradigm shift. Expert Rev. Anti Infect. Ther. 14, 577–585 (2016). (PMID: 27077447493977310.1080/14787210.2016.1178065)
Hori, Y. et al. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J. Pharmacol. Exp. Ther. 335, 231–238 (2010). (PMID: 2062499210.1124/jpet.110.170274)
Murakami, K. et al. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a phase III, randomised, double-blind study. Gut 65, 1439–1446 (2016). (PMID: 2693587610.1136/gutjnl-2015-311304)
Kiyotoki, S., Nishikawa, J. & Sakaida, I. Efficacy of vonoprazan for Helicobacter pylori eradication. Int. Med. 59, 153–161 (2020). (PMID: 10.2169/internalmedicine.2521-18)
McFarland, L. V., Huang, Y., Wang, L. & Malfertheiner, P. Systematic review and meta-analysis: multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United European Gastroenterol. J. 4, 546–561 (2016). (PMID: 2753636510.1177/2050640615617358)
Zhang, M.-M., Qian, W., Qin, Y.-Y., He, J. & Zhou, Y.-H. Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World J. Gastroenterol. 21, 4345–4357 (2015). (PMID: 25892886439409710.3748/wjg.v21.i14.4345)
Shi, X. et al. Efficacy and safety of probiotics in eradicating Helicobacter pylori: a network meta-analysis. Medicine 98, e15180 (2019). (PMID: 30985706648581910.1097/MD.0000000000015180)
Mégraud, F., Occhialini, A. & Rossignol, J. F. Nitazoxanide, a potential drug for eradication of Helicobacter pylori with no cross-resistance to metronidazole. Antimicrob. Agents Chemother. 42, 2836–2840 (1998). (PMID: 979721210595210.1128/AAC.42.11.2836)
Yamamoto, Y. et al. Nitazoxanide, a nitrothiazolide antiparasitic drug, is an anti-Helicobacter pylori agent with anti-vacuolating toxin activity. Chemotherapy 45, 303–312 (1999). (PMID: 1039401410.1159/000007200)
Mohammadi, M., Attaran, B., Malekzadeh, R. & Graham, D. Y. Furazolidone, an underutilized drug for H. pylori eradication: lessons from Iran. Dig. Dis. Sci. 62, 1890–1896 (2017). (PMID: 28577244552799310.1007/s10620-017-4628-5)
Matsuzaki, J. et al. Efficacy of sitafloxacin-based rescue therapy for Helicobacter pylori after failures of first- and second-line therapies. Antimicrob. Agents Chemother. 56, 1643–1645 (2012). (PMID: 22203601329487810.1128/AAC.05941-11)
Sugimoto, M. et al. High Helicobacter pylori cure rate with sitafloxacin-based triple therapy. Aliment. Pharmacol. Therapeut. 42, 477–483 (2015). (PMID: 10.1111/apt.13280)
Nilius, A. M. et al. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother. 47, 3260–3269 (2003). (PMID: 1450603920115310.1128/AAC.47.10.3260-3269.2003)
Van Bambeke, F. Delafloxacin, a non-zwitterionic fluoroquinolone in phase III of clinical development: evaluation of its pharmacology, pharmacokinetics, pharmacodynamics and clinical efficacy. Future microbiol. 10, 1111–1123 (2015). (PMID: 2611947910.2217/fmb.15.39)
Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. Antibiotic resistance and gyrA mutation affect the efficacy of 10-day sitafloxacin-metronidazole-esomeprazole therapy for Helicobacter pylori in penicillin allergic patients. United European Gastroenterol. J. 5, 796–804 (2017). (PMID: 29026593562587510.1177/2050640616688995)
Suzuki, H., Nishizawa, T., Muraoka, H. & Hibi, T. Sitafloxacin and garenoxacin may overcome the antibiotic resistance of Helicobacter pylori with gyrA mutation. Antimicrob. Agents Chemother. 53, 1720–1721 (2009). (PMID: 19188389266308110.1128/AAC.00049-09)
Shah, S. C., Iyer, P. G. & Moss, S. F. AGA clinical practice update on the management of refractory Helicobacter pylori infection: expert review. Gastroenterology 160, 1831–1841 (2021). (PMID: 3352440210.1053/j.gastro.2020.11.059)
Hong, J. et al. Antibiotic resistance and CYP2C19 polymorphisms affect the efficacy of concomitant therapies for Helicobacter pylori infection: an open-label, randomized, single-centre clinical trial. J. Antimicrob. Chemother. 71, 2280–2285 (2016). (PMID: 2710709710.1093/jac/dkw118)
Berthenet, E. et al. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol. 16, 84 (2018). (PMID: 30071832609096110.1186/s12915-018-0550-3)
Windham, I. H. et al. Helicobacter pylori biofilm formation is differentially affected by common culture conditions, and proteins play a central role in the biofilm matrix. Appl. Environ. Microbiol. 84, e00391-18 (2018).
Chen, X. et al. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: a comparison with conventional triple therapy. Microb. Pathog. 131, 112–119 (2019). (PMID: 3095181810.1016/j.micpath.2019.04.001)
Tsugawa, H. et al. Alpha-ketoglutarate oxidoreductase, an essential salvage enzyme of energy metabolism, in coccoid form of Helicobacter pylori. Biochem. Biophys. Res. Commun. 376, 46–51 (2008). (PMID: 1875515010.1016/j.bbrc.2008.08.078)
Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011). (PMID: 22035192321635810.1021/ac202028g)
Talarico, S. et al. High prevalence of Helicobacter pylori clarithromycin resistance mutations among Seattle patients measured by droplet digital PCR. Helicobacter 23, e12472 (2018). (PMID: 29480566586725310.1111/hel.12472)
Sedlak, R. H., Kuypers, J. & Jerome, K. R. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn. Microbiol. Infect. Dis. 80, 285–286 (2014). (PMID: 2527774610.1016/j.diagmicrobio.2014.09.004)
Lee, K. H. et al. Can aminoglycosides be used as a new treatment for Helicobacter pylori? In vitro activity of recently isolated Helicobacter pylori. Infect. Chemother. 51, 10–20 (2019). (PMID: 30941933644601610.3947/ic.2019.51.1.10)
Jeong, S. J. et al. Gentamicin-intercalated smectite as a new therapeutic option for Helicobacter pylori eradication. J. Antimicrob. Chemother. 73, 1324–1329 (2018). (PMID: 29444284)
Shi, J., Jiang, Y. & Zhao, Y. Promising in vitro and in vivo inhibition of multidrug-resistant Helicobacter pylori by linezolid and novel oxazolidinone analogues. J. Glob. Antimicrob. Resist. 7, 106–109 (2016). (PMID: 2771844110.1016/j.jgar.2016.07.016)
Kiga, K. et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 11, 2934 (2020). (PMID: 32523110728708710.1038/s41467-020-16731-6)
Latham, S. R., Labigne, A. & Jenks, P. J. Production of the RdxA protein in metronidazole-susceptible and -resistant isolates of Helicobacter pylori cultured from treated mice. J. Antimicrob. Chemother. 49, 675–678 (2002). (PMID: 1190984310.1093/jac/49.4.675)
Kim, S. Y. et al. Genetic analysis of Helicobacter pylori clinical isolates suggests resistance to metronidazole can occur without the loss of functional RdxA. J. Antibiot. 62, 43–50 (2009). (PMID: 10.1038/ja.2008.6)
Binh, T. T., Suzuki, R., Trang, T. T. H., Kwon, D. H. & Yamaoka, Y. Search for novel candidate mutations for metronidazole resistance in Helicobacter pylori using next-generation sequencing. Antimicrob. Agents Chemother. 59, 2343–2348 (2015). (PMID: 25645832435677910.1128/AAC.04852-14)
Suzuki, S. et al. Past rifampicin dosing determines rifabutin resistance of Helicobacter pylori. Digestion 79, 1–4 (2009). (PMID: 1914203610.1159/000191204)
Den Dunnen, J. & Antonarakis, S. Nomenclature for the description of human sequence variations. Hum. Genet. 109, 121–124 (2001). (PMID: 10.1007/s004390100505)
Ogino, S. et al. Standard mutation nomenclature in molecular diagnostics: practical and educational challenges. J. Mol. Diag. 9, 1–6 (2007). (PMID: 10.2353/jmoldx.2007.060081)
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. (Clinical and Laboratory Standards Institute, 2016).
Kahlmeter, G. et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 12, 501–503 (2006). (PMID: 1670069610.1111/j.1469-0691.2006.01454.x)
Gao, C. et al. Eradication treatment of Helicobacter pylori infection based on molecular pathologic antibiotic resistance. Infect. Drug. Resist. 13, 69–79 (2020). (PMID: 32021321695483110.2147/IDR.S232169)
Luo, X.-F. et al. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori. World J. Gastroenterol. 22, 5822–5830 (2016). (PMID: 27433095493221710.3748/wjg.v22.i25.5822)
Ménard, A., Santos, A., Mégraud, F. & Oleastro, M. PCR-restriction fragment length polymorphism can also detect point mutation A2142C in the 23S rRNA gene, associated with Helicobacter pylori resistance to clarithromycin. Antimicrob. Agents Chemother. 46, 1156–1157 (2002). (PMID: 1189761312707910.1128/AAC.46.4.1156-1157.2002)
Occhialini, A. et al. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob. Agents Chemother. 41, 2724–2728 (1997). (PMID: 942004616419610.1128/AAC.41.12.2724)
Szczebara, F., Dhaenens, L., Vincent, P. & Husson, M. Evaluation of rapid molecular methods for detection of clarithromycin resistance in Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis. 16, 162–164 (1997). (PMID: 910584610.1007/BF01709478)
Versalovic, J. et al. Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J. Antimicrob. Chemother. 40, 283–286 (1997). (PMID: 930199710.1093/jac/40.2.283)
Ribeiro, M. L. et al. Detection of high-level tetracycline resistance in clinical isolates of Helicobacter pylori using PCR-RFLP. FEMS Immunol. Med. Microbiol. 40, 57–61 (2004). (PMID: 1473418710.1016/S0928-8244(03)00277-3)
Stone, G. G. et al. A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob. Agents Chemother. 41, 712–714 (1997). (PMID: 905602116377910.1128/AAC.41.3.712)
Nahm, J. H., Kim, W. K., Kwon, Y. & Kim, H. Detection of Helicobacter pylori with clarithromycin resistance-associated mutations using peptide nucleic acid probe-based melting point analysis. Helicobacter 24, e12634 (2019). (PMID: 3130466410.1111/hel.12634)
Lehours, P., Siffré, E. & Mégraud, F. DPO multiplex PCR as an alternative to culture and susceptibility testing to detect Helicobacter pylori and its resistance to clarithromycin. BMC Gastroenterol. 11, 112 (2011). (PMID: 22004003320683210.1186/1471-230X-11-112)
Pina, M., Occhialini, A., Monteiro, L., Doermann, H.-P. & Mégraud, F. Detection of point mutations associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. J. Clin. Microbiol. 36, 3285–3290 (1998). (PMID: 977458010531610.1128/JCM.36.11.3285-3290.1998)
Van Doorn, L. J. et al. Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance. Antimicrob. Agents Chemother. 43, 1779–1782 (1999). (PMID: 103902448936510.1128/AAC.43.7.1779)
Maeda, S. et al. Detection of clarithromycin-resistant Helicobacter pylori strains by a preferential homoduplex formation assay. J. Clin. Microbiol. 38, 210–214 (2000). (PMID: 106180898869710.1128/JCM.38.1.210-214.2000)
Alarcón, T., Domingo, D., Prieto, N. & Lopez-Brea, M. Clarithromycin resistance stability in Helicobacter pylori: influence of the MIC and type of mutation in the 23S rRNA. J. Antimicrob. Chemother. 46, 613–616 (2000). (PMID: 1102026010.1093/jac/46.4.613)
Chisholm, S. A., Owen, R. J., Teare, E. L. & Saverymuttu, S. PCR-based diagnosis of Helicobacter pylori infection and real-time determination of clarithromycin resistance directly from human gastric biopsy samples. J. Clin. Microbiol. 39, 1217–1220 (2001). (PMID: 112830308791310.1128/JCM.39.4.1217-1220.2001)
Gibson, J., Saunders, N., Burke, B. & Owen, R. Novel method for rapid determination of clarithromycin sensitivity in Helicobacter pylori. J. Clin. Microbiol. 37, 3746–3748 (1999). (PMID: 105235918574810.1128/JCM.37.11.3746-3748.1999)
Matsumura, M. et al. Rapid detection of mutations in the 23S rRNA gene of Helicobacter pylori that confers resistance to clarithromycin treatment to the bacterium. J. Clin. Microbiol. 39, 691–695 (2001). (PMID: 111581298779810.1128/JCM.39.2.691-695.2001)
Oleastro, M. et al. Real-time PCR assay for rapid and accurate detection of point mutations conferring resistance to clarithromycin in Helicobacter pylori. J. Clin. Microbiol. 41, 397–402 (2003). (PMID: 1251787914963410.1128/JCM.41.1.397-402.2003)
Glocker, E., Berning, M., Gerrits, M., Kusters, J. & Kist, M. Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. Antimicrob. Agents Chemother. 49, 3166–3170 (2005). (PMID: 16048919119628610.1128/AAC.49.8.3166-3170.2005)
Glocker, E. & Kist, M. Rapid detection of point mutations in the gyrA gene of Helicobacter pylori conferring resistance to ciprofloxacin by a fluorescence resonance energy transfer-based real-time PCR approach. J. Clin. Microbiol. 42, 2241–2246 (2004). (PMID: 1513120140462710.1128/JCM.42.5.2241-2246.2004)
Da Hyun Jung, J.-H. K. et al. Peptide nucleic acid probe-based analysis as a new detection method for clarithromycin resistance in Helicobacter pylori. Gut Liver 12, 641–647 (2018). (PMID: 10.5009/gnl18111)
Yilmaz, Ö. & Demiray, E. Clinical role and importance of fluorescence in situ hybridization method in diagnosis of H pylori infection and determination of clarithromycin resistance in H pylori eradication therapy. World J. Gastroenterol. 13, 671–675 (2007). (PMID: 17278188406599810.3748/wjg.v13.i5.671)
Trebesius, K. et al. Rapid and specific detection of Helicobacter pylori macrolide resistance in gastric tissue by fluorescent in situ hybridisation. Gut 46, 608–614 (2000). (PMID: 10764702172791410.1136/gut.46.5.608)
Cerqueira, L. et al. PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol. 11, 101 (2011). (PMID: 21569555311206510.1186/1471-2180-11-101)
Latham, S. R., Owen, R. J., Elviss, N. C., Labigne, A. & Jenks, P. J. Differentiation of metronidazole-sensitive and -resistant clinical isolates of Helicobacter pylori by immunoblotting with antisera to the RdxA protein. J. Clin. Microbiol. 39, 3052–3055 (2001). (PMID: 115261278829510.1128/JCM.39.9.3052-3055.2001)
Fauzia, K. A. et al. Biofilm formation and antibiotic resistance phenotype of Helicobacter pylori clinical isolates. Toxins 12, 473 (2020). (PMID: 747232910.3390/toxins12080473)
Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018). (PMID: 29851291602006910.1002/cpmb.59)
Substance Nomenclature:
0 (Anti-Bacterial Agents)
Entry Date(s):
Date Created: 20210518 Date Completed: 20210927 Latest Revision: 20230202
Update Code:
20240104
DOI:
10.1038/s41575-021-00449-x
PMID:
34002081
Czasopismo naukowe
Helicobacter pylori is a major human pathogen for which increasing antibiotic resistance constitutes a serious threat to human health. Molecular mechanisms underlying this resistance have been intensively studied and are discussed in this Review. Three profiles of resistance - single drug resistance, multidrug resistance and heteroresistance - seem to occur, probably with overlapping fundamental mechanisms and clinical implications. The mechanisms that have been most studied are related to mutational changes encoded chromosomally and disrupt the cellular activity of antibiotics through target-mediated mechanisms. Other biological attributes driving drug resistance in H. pylori have been less explored and this could imply more complex physiological changes (such as impaired regulation of drug uptake and/or efflux, or biofilm and coccoid formation) that remain largely elusive. Resistance-related attributes deployed by the pathogen cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes. Subsequent to the increasing antibiotic resistance, a substantial drop in H. pylori treatment efficacy has been noted globally. In the absence of an efficient vaccine, enhanced efforts are needed for setting new treatment strategies and for a better understanding of the emergence and spread of drug-resistant bacteria, as well as for improving diagnostic tools that can help optimize current antimicrobial regimens.
(© 2021. Springer Nature Limited.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies