Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes.

Tytuł :
Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes.
Autorzy :
Leclerc JC; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .; Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile. .
de Bettignies T; UMS Patrimoine Naturel (PATRINAT), AFB-CNRS-MNHN, CP41, 36 rue Geoffroy Saint-Hilaire, 75005, Paris, France.; School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.
de Bettignies F; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
Christie H; Marine Biology Section, Norwegian Institute for Water Research, Oslo, Norway.
Franco JN; CIIMAR, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.; MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal.
Leroux C; Sorbonne Université, CNRS, FR 2424, Station Biologique, Place Georges Teissier, 29680, Roscoff, France.
Davoult D; Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France.
Pedersen MF; Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark.
Filbee-Dexter K; School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.; Benthic Communities Research Group, Institute of Marine Research, His, Norway.
Wernberg T; School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.; Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark.; Benthic Communities Research Group, Institute of Marine Research, His, Norway.
Pokaż więcej
Źródło :
Oecologia [Oecologia] 2021 Jun; Vol. 196 (2), pp. 441-453. Date of Electronic Publication: 2021 May 19.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Berlin ; New York, Springer.
MeSH Terms :
Ecosystem*
Food Chain*
Animals ; Feeding Behavior ; France ; Norway ; Sea Urchins
References :
Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK.
Anderson TR, Hessen DO, Boersma M, Urabe J, Mayor DJ (2017) Will invertebrates require increasingly carbon-rich food in a warming world? Am Nat 190:725–742. (PMID: 29166161)
Anstett DN, Naujokaitis-Lewis I, Johnson MT (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923.
Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85:2682–2686.
Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284.
Bekkby T, Angeltveit G, Gundersen H, Tveiten L, Norderhaug KM (2015) Red sea urchins (Echinus esculentus) and water flow influence epiphytic macroalgae density. Mar Biol Res 11:375–384.
Bell TM, Sotka EE (2012) Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica. Oecologia 170:383–393. (PMID: 22451011)
Bennett S, Wernberg T, de Bettignies T, Kendrick GA, Anderson RJ, Bolton JJ, Rodgers KL, Shears NT, Leclerc J-C, Lévêque L, Davoult D, Christie HC (2015a) Canopy interactions and physical stress gradients in subtidal communities. Ecol Lett 18:677–686. (PMID: 25975532)
Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ (2015b) Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett 18:714–723. (PMID: 25994785)
Blanchet-Aurigny A, Guillou M, Pernet F, Gaffet J-D, Dubois SF (2012) Tissue-diet discrimination factors of isotopic ratios (∆δ N among fish tissues: implications for the study of trophic structure. Funct Ecol 13:225–231.
Post D (2002) Using stable isotopes to estimate trophic positions: models, methods, and assumptions. Ecology 83:703–718.
Rho MS, Lee KP (2017) Temperature-driven plasticity in nutrient use and preference in an ectotherm. Oecologia 185:401–413. (PMID: 28932986)
Rosenblatt AE, Schmitz OJ (2016) Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol Evol 31:965–975. (PMID: 27726943)
Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744. (PMID: 28522532)
Schaal G, Riera P, Leroux C (2010) Trophic ecology in a Northern Brittany (Batz Island, France) kelp (Laminaria digitata) forest, as investigated through stable isotope and chemical assays. J Sea Res 63:24–35.
Schmitz OJ, Rosenblatt AE, Smylie M (2016) Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97:3119–3130. (PMID: 27870021)
Sentis A, Hemptinne JL, Brodeur J (2014) Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol Lett 17:785–793. (PMID: 24751223)
Sperfeld E, Wagner ND, Halvorson HM, Malishev M, Raubenheimer D (2017) Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct Ecol 31:286–296.
Steen H, Moy FE, Bodvin T, Husa V (2016) Regrowth after kelp harvesting in Nord-Trøndelag, Norway. ICES J Mar Sci 73:2708–2720.
Steneck R, Watling L (1982) Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar Biol 68:299–319.
Teagle H, Smale DA (2018) Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. Divers Distrib 24:1367–1380.
Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281.
Tyler P, Young CM, Serafy K (1995) Distribution, diet and reproduction in the genus Echinus: evidence for recent diversification? In: Emson RH, Smith AB, Campbell AC (eds) Echinoderm research 1995. Balkema, Rotterdam, pp 29–38.
Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge.
Vanderklift MA, Kendrick GA, Smit AJ (2006) Differences in trophic position among sympatric sea urchin species. Estuar Coast Shelf Sci 66:291–297.
Vergés A, McCosker E, Mayer-Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD (2019) Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct Ecol 33:1000–1013.
Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694. (PMID: 20412279)
Wernberg T, Krumhansl KA, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the world’s kelp forests. In: Charles S (ed) World Seas: an environmental evaluation, vol volume III: ecological issues and environmental impacts, 2nd edn. Elsevier, pp 57–78.
Whalen MA, Whippo RDB, Stachowicz JJ, York PH, Aiello E, Alcoverro T, Altieri AH, Benedetti-Cecchi L, Bertolini C, Bresch M, Bulleri F, Carnell PE, Cimon S, Connolly RM, Cusson M, Diskin MS, D’Souza E, Flores AAV, Fodrie FJ, Galloway AWE, Gaskins LC, Graham OJ, Hanley TC, Henderson CJ, Hereu CM, Hessing-Lewis M, Hovel KA, Hughes BB, Hughes AR, Hultgren KM, Jänes H, Janiak DS, Johnston LN, Jorgensen P, Kelaher BP, Kruschel C, Lanham BS, Lee K-S, Lefcheck JS, Lozano-Álvarez E, Macreadie PI, Monteith ZL, O’Connor NE, Olds AD, O’Leary JK, Patrick CJ, Pino O, Poore AGB, Rasheed MA, Raymond WW, Reiss K, Rhoades OK, Robinson MT, Ross PG, Rossi F, Schlacher TA, Seemann J, Silliman BR, Smee DL, Thiel M, Unsworth RKF, van Tussenbroek BI, Vergés A, Yeager ME, Yednock BK, Ziegler SL, Duffy JE (2020) Climate drives the geography of marine consumption by changing predator communities. Proc Nat Acad Sci 117(45):28160–28166. https://doi.org/10.1073/pnas.2005255117. (PMID: 10.1073/pnas.2005255117331064097668042)
Grant Information :
FT110100174 Australian Research Council; DP190100058 Australian Research Council; ANR-10-BTBR-04 Agence Nationale de la Recherche; 255085/E40 Norges Forskningsråd
Contributed Indexing :
Keywords: Echinus esculentus; Food web; Laminaria hyperborea; Opportunism; Trophic plasticity; Urchin grazing
Entry Date(s) :
Date Created: 20210519 Date Completed: 20210701 Latest Revision: 20210701
Update Code :
20210702
DOI :
10.1007/s00442-021-04936-5
PMID :
34009471
Czasopismo naukowe
As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies