Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prone position versus supine position in postoperative radiotherapy for breast cancer: A meta-analysis.

Tytuł:
Prone position versus supine position in postoperative radiotherapy for breast cancer: A meta-analysis.
Autorzy:
Lai J; Department of Radiation Oncology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, Zhejiang.
Zhong F; Department of oncology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi.
Deng J; Department of oncology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi.
Hu S; Department of General Medicine, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, Zhejiang.
Shen R; Department of Second Institute of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China.
Luo H; Department of oncology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi.
Luo Y; Department of Radiation Oncology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, Zhejiang.
Źródło:
Medicine [Medicine (Baltimore)] 2021 May 21; Vol. 100 (20), pp. e26000.
Typ publikacji:
Comparative Study; Journal Article; Meta-Analysis
Język:
English
Imprint Name(s):
Original Publication: Hagerstown, Md : Lippincott Williams & Wilkins
MeSH Terms:
Breast Neoplasms/*therapy
Organ Sparing Treatments/*methods
Organs at Risk/*radiation effects
Patient Positioning/*methods
Radiation Injuries/*prevention & control
Coronary Vessels/radiation effects ; Female ; Heart/radiation effects ; Humans ; Lung/radiation effects ; Mastectomy ; Prone Position ; Radiation Injuries/etiology ; Radiometry/statistics & numerical data ; Radiotherapy Dosage ; Radiotherapy, Adjuvant/adverse effects ; Radiotherapy, Adjuvant/methods ; Supine Position
References:
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994;12:447–53.
(EBCTCG) EBCTCG. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366:2087–106.
EBCTCG) EBCTCG. Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Lancet 2000;355:1757–70.
Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002;347:1233–41.
Henson KE, McGale P, Taylor C, Darby SC. Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. Br J Cancer 2013;108:179–82.
Taylor CW, Povall JM, McGale P, et al. Cardiac dose from tangential breast cancer radiotherapy in the year 2006. Int J Radiat Oncol Biol Phys 2008;72:501–7.
Nilsson G, Holmberg L, Garmo H, et al. Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 2012;30:380–6.
Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013;368:987–98.
Gagliardi G, Bjöhle J, Lax I, et al. Radiation pneumonitis after breast cancer irradiation: analysis of the complication probability using the relative seriality model. Int J Radiation Oncology Biol Phys 2000;46:373–81.
Grantzau T, Thomsen MS, Vaeth M, et al. Risk of second primary lung cancer in women after radiotherapy for breast cancer. Radiother Oncol 2014;111:366–73.
Schubert LK, Gondi V, Sengbusch E, et al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol 2011;100:241–6.
Yin Y, Chen J, Sun T, et al. Dosimetric research on intensity-modulated arc radiotherapy planning for left breast cancer after breast-preservation surgery. Med Dosim 2012;37:287–92.
Muren LP, Maurstad G, Hafslund R, et al. Cardiac and pulmonary doses and complication probabilities in standard and conformal tangential irradiation in conservative management of breast cancer. Radiother Oncol 2002;62:173–83.
Iorio GC, Franco P, Gallio E, et al. Volumetric modulated arc therapy (VMAT) to deliver nodal irradiation in breast cancer patients. Med Oncol 2017;35:01–8.
Ares C, Khan S, Macartain AM, et al. Postoperative proton radiotherapy for localized and locoregional breast cancer: potential for clinically relevant improvements? Int J Radiat Oncol Biol Phys 2010;76:685–97.
Bergom C, Currey A, Desai N, Tai A, Strauss JB. Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol 2018;8:87–96.
Lai J, Hu S, Luo Y, et al. Meta-analysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for left-side breast cancer. Breast Cancer 2020;27:299–307.
White R, Foroudi F, Sia J, Marr MA, Lim Joon D. Reduced dose to small bowel with the prone position and a belly board versus the supine position in neoadjuvant 3D conformal radiotherapy for rectal adenocarcinoma. J Med Radiat Sci 2017;64:120–4.
Scobioala S, Kittel C, Niermann P, et al. A treatment planning study of prone vs. supine positions for locally advanced rectal carcinoma: comparison of 3dimensional conformal radiotherapy, tomotherapy, volumetric modulated arc therapy, and intensity-modulated radiotherapy. Strahlenther Onkol 2018;194:975–84.
Buijsen J, Jager JJ, Bovendeerd J, et al. Prone breast irradiation for pendulous breasts. Radiother Oncol 2007;82:337–40.
Alonso-Basanta M, Ko J, Babcock M, Dewyngaert JK, Formenti SC. Coverage of axillary lymph nodes in supine vs. prone breast radiotherapy. Int J Radiat Oncol Biol Phys 2009;73:745–51.
Varga Z, Hideghety K, Mezo T, et al. Individual positioning: a comparative study of adjuvant breast radiotherapy in the prone versus supine position. Int J Radiat Oncol Biol Phys 2009;75:94–100.
Veldeman L, Speleers B, Bakker M, et al. Preliminary results on setup precision of prone-lateral patient positioning for whole breast irradiation. Int J Radiat Oncol Biol Phys 2010;78:111–8.
Hannan R, Thompson RF, Chen Y, et al. Hypofractionated whole-breast radiation therapy: does breast size matter? Int J Radiat Oncol Biol Phys 2012;84:894–901.
Chen JL, Cheng JC, Kuo SH, Chan HM, Huang YS, Chen YH. Prone breast forward intensity-modulated radiotherapy for Asian women with early left breast cancer: factors for cardiac sparing and clinical outcomes. J Radiat Res 2013;54:899–908.
Fernandez-Lizarbe E, Montero A, Polo A, et al. Pilot study of feasibility and dosimetric comparison of prone versus supine breast radiotherapy. Clin Transl Oncol 2013;15:450–9.
Krengli M, Masini L, Caltavuturo T, et al. Prone versus supine position for adjuvant breast radiotherapy: a prospective study in patients with pendulous breasts. Radiation Oncol 2013;8:232–7.
Mulliez T, Speleers B, Madani I, et al. Whole breast radiotherapy in prone and supine position: is there a place for multi-beam IMRT? Radiation Oncol 2013;8:151–6.
Mulliez T, Veldeman L, van Greveling A, et al. Hypofractionated whole breast irradiation for patients with large breasts: a randomized trial comparing prone and supine positions. Radiother Oncol 2013;108:203–8.
Cammarota F, Giugliano FM, Iadanza L, et al. Hypofractionated breast cancer radiotherapy. Helical tomotherapy in supine position or classic 3D- conformal radiotherapy in prone position: which is better? Anticancer Res 2014;34:1233–8.
Fan LL, Luo YK, Xu JH, He L, Wang J, Du XB. A dosimetry study precisely outlining the heart substructure of left breast cancer patients using intensity-modulated radiation therapy. J Appl Clin Med Phys 2014;15:4624–34.
Mulliez T, Veldeman L, Speleers B, et al. Heart dose reduction by prone deep inspiration breath hold in left-sided breast irradiation. Radiother Oncol 2015;114:79–84.
Kim H, Kim J. Evaluation of the anatomical parameters for normal tissue sparing in the prone position radiotherapy with small sized left breasts. Oncotarget 2016;7:72211–8.
Takahashi K, Morota M, Kagami Y, et al. Prospective study of postoperative whole breast radiotherapy for Japanese large-breasted women: a clinical and dosimetric comparisons between supine and prone positions and a dose measurement using a breast phantom. BMC Cancer 2016;16:757–67.
Kahan Z, Rarosi F, Gaal S, et al. A simple clinical method for predicting the benefit of prone vs. supine positioning in reducing heart exposure during left breast radiotherapy. Radiother Oncol 2018;126:487–92.
Saini AS, Hwang CS, Biagioli MC, Das IJ. Evaluation of sparing organs at risk (OARs) in left-breast irradiation in the supine and prone positions and with deep inspiration breath-hold. J Appl Clin Med Phys 2018;19:195–204.
Chung Y, Yu JI, Park W, Choi DH. Phase II study, feasibility of prone position in postoperative whole breast radiotherapy: a dosimetric comparison. Cancer Res Treat 2019;51:1370–9.
Saini AS, Das IJ, Hwang CS, Biagioli MC, Lee WE. Biological indices evaluation of various treatment techniques for left-sided breast treatment. Pract Radiat Oncol 2019;9:e579–90.
Bentel GC, Marks LB, Whiddon CS, Prosnitz LR. Acute and late morbidity of using a breast positioning ring in women with large/pendulous breasts. Radiother Oncol 1999;50:277–81.
Chino JP, Marks LB. Prone positioning causes the heart to be displaced anteriorly within the thorax: implications for breast cancer treatment. Int J Radiat Oncol Biol 2008;70:916–20.
Hjelstuen MHB, Mjaaland I, Vikström J, Dybvik KI. Radiation during deep inspiration allows loco-regional treatment of left breast and axillary-, supraclavicular- and internal mammary lymph nodes without compromising target coverage or dose restrictions to organs at risk. Acta Oncol 2011;51:333–44.
Grant Information:
19-3-03 The First batch of Yiwu Science and Technology Project in 2019
Entry Date(s):
Date Created: 20210520 Date Completed: 20210525 Latest Revision: 20230103
Update Code:
20240104
PubMed Central ID:
PMC8136988
DOI:
10.1097/MD.0000000000026000
PMID:
34011096
Czasopismo naukowe
Background: This meta-analysis evaluates the difference of sparing organs at risk (OAR) in different position (Prone position and Supine position) with different breathing patterns (Free breathing, FB/Deep inspiration breath hold, DIBH) for breast cancer patients receiving postoperative radiotherapy and provides a useful reference for clinical practice.
Method: The relevant controlled trials of prone position versus supine position in postoperative radiotherapy for breast cancer were retrieved from the sources of PubMed, Cochrane Library, Embase, Web of Science and ClinicalTrails.gov. The principal outcome of interest was OAR doses (heart dose, left anterior descending coronary artery dose and ipsilateral lung dose) and target coverage. We mainly compared the effects of P-FB (Prone position FB) and S-FB (Supine position FB) and discussed the effects of DIBH combined with different positions on OAR dose in postoperative radiotherapy. We calculated summary standardized mean difference (SMD) and 95% confidence intervals (CI). The meta-analysis was performed using RevMan 5.4 software.
Results: The analysis included 751 patients from 19 observational studies. Compared with the S-FB, the P-FB can have lower heart dose, left anterior descending coronary artery (LADCA) dose, and ipsilateral lung dose (ILL) more effectively, and the difference was statistically significant (heart dose, SMD = - 0.51, 95% CI - 0.66 ∼ - 0.36, P < .00001. LADCA dose, SMD = - 0.58, 95% CI - 0.85 ∼ - 0.31, P < .0001. ILL dose, SMD = - 2.84, 95% CI - 3.2 ∼ - 2.48, P < .00001). And there was no significant difference in target coverage between the S-FB and P-FB groups (SMD = - 0.1, 95% CI - 0.57 ∼ 0.36, P = .66). Moreover, through descriptive analysis, we found that P-DIBH (Prone position DIBH) has better sparing OAR than P-FB and S-DIBH (Supine position DIBH).
Conclusion: By this meta-analysis, compared with the S-FB we found that implementation of P-FB in postoperative radiotherapy for breast cancer can reduce irradiation of heart dose, LADCA dose and ILL dose, without compromising mean dose of target coverage. Moreover, P-DIBH might become the most promising way for breast cancer patients to undergo radiotherapy.
(Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies