Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Remifentanil self-administration in mice promotes sex-specific prefrontal cortex dysfunction underlying deficits in cognitive flexibility.

Tytuł:
Remifentanil self-administration in mice promotes sex-specific prefrontal cortex dysfunction underlying deficits in cognitive flexibility.
Autorzy:
Anderson EM; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
Engelhardt A; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
Demis S; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
Porath E; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
Hearing MC; Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA. .
Źródło:
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology [Neuropsychopharmacology] 2021 Sep; Vol. 46 (10), pp. 1734-1745. Date of Electronic Publication: 2021 May 19.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: 2003- : London : Nature Publishing Group
Original Publication: [New York, NY] : Elsevier, [c1987-
MeSH Terms:
Prefrontal Cortex*
Pyramidal Cells*
Animals ; Cognition ; Female ; Male ; Mice ; Remifentanil ; Synaptic Transmission
References:
Gould TJ. Addiction and cognition. Addict Sci Clin Pr. 2010;5:4–14.
Zeng H, Lee TM, Waters JH, So KF, Sham PC, Schottenfeld RS, et al. Impulsivity, cognitive function, and their relationship in heroin-dependent individuals. J Clin Exp Neuropsychol. 2013;35:897–905. (PMID: 2404089410.1080/13803395.2013.828022)
Lee TM, Zhou WH, Luo XJ, Yuen KS, Ruan XZ, Weng XC. Neural activity associated with cognitive regulation in heroin users: A fMRI study. Neurosci Lett. 2005;382:211–6. (PMID: 1592509210.1016/j.neulet.2005.03.053)
Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci. 2008;363:3125–35. (PMID: 18640910260732210.1098/rstb.2008.0089)
Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69. (PMID: 22011681346234210.1038/nrn3119)
Li CS, Sinha R. Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neurosci Biobehav Rev. 2008;32:581–97. (PMID: 1816405810.1016/j.neubiorev.2007.10.003)
Porrino LJ, Smith HR, Nader MA, Beveridge TJ. The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1593–600. (PMID: 17900777221143110.1016/j.pnpbp.2007.08.040)
Bissonette GB, Roesch MR. Neurophysiology of rule switching in the corticostriatal circuit. Neuroscience. 2017;345:64–76. (PMID: 2685177410.1016/j.neuroscience.2016.01.062)
Rogers JL, Ghee S, See RE. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience. 2008;151:579–88. (PMID: 1806135810.1016/j.neuroscience.2007.10.012)
Rich EL, Shapiro M. Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci. 2009;29:7208–19. (PMID: 19494143322928210.1523/JNEUROSCI.6068-08.2009)
Spellman T, Svei M, Kaminsky J, Manzano-Nieves G, Liston C. Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring. Cell. 2021;184:2750–66.e17. (PMID: 3386195110.1016/j.cell.2021.03.047)
Matsuo K, Glahn DC, Peluso MA, Hatch JP, Monkul ES, Najt P, et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry. 2007;12:158–66. (PMID: 1698339010.1038/sj.mp.4001894)
Kehrer C, Maziashvili N, Dugladze T, Gloveli T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci. 2008;1:6. (PMID: 18946539252599810.3389/neuro.02.006.2008)
Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52. (PMID: 12359667120137310.1176/appi.ajp.159.10.1642)
Botelho MF, Relvas JS, Abrantes M, Cunha MJ, Marques TR, Rovira E, et al. Brain blood flow SPET imaging in heroin abusers. Ann N. Y Acad Sci. 2006;1074:466–77. (PMID: 1710594510.1196/annals.1369.047)
Langleben DD, Ruparel K, Elman I, Busch-Winokur S, Pratiwadi R, Loughead J, et al. Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry. 2008;165:390–4. (PMID: 1805622410.1176/appi.ajp.2007.07010070)
Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature. 2013;496:359–62. (PMID: 2355288910.1038/nature12024)
Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, et al. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron. 2007;54:73–87. (PMID: 1740857910.1016/j.neuron.2007.03.006)
Sun W, Rebec GV. Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci. 2006;26:8004–8. (PMID: 16870745667420810.1523/JNEUROSCI.1413-06.2006)
Peters J, De, Vries TJ. Glutamate mechanisms underlying opiate memories. Cold Spring Harb Perspect Med. 2012;2:a012088. (PMID: 22951449342681310.1101/cshperspect.a012088)
Peters J, Pattij T, De Vries TJ. Targeting cocaine versus heroin memories: divergent roles within ventromedial prefrontal cortex. Trends Pharm Sci. 2013;34:689–95. (PMID: 2418262410.1016/j.tips.2013.10.004)
Shen H, Moussawi K, Zhou W, Toda S, Kalivas PW. Heroin relapse requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc Natl Acad Sci USA. 2011;108:19407–12. (PMID: 22084102322845610.1073/pnas.1112052108)
Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry. 1999;156:11–8. (PMID: 9892292282082610.1176/ajp.156.1.11)
Qin L, Ma K, Yan Z. Chemogenetic activation of prefrontal cortex in Shank3-deficient mice ameliorates social deficits, NMDAR hypofunction, and Sgk2 downregulation. iScience. 2019;17:24–35. (PMID: 31247448659908810.1016/j.isci.2019.06.014)
Anderson EM, Gomez D, Caccamise A, McPhail D, Hearing M. Chronic unpredictable stress promotes cell-specific plasticity in prefrontal cortex D1 and D2 pyramidal neurons. Neurobiol Stress. 2019;10:100152. (PMID: 30937357643061810.1016/j.ynstr.2019.100152)
Hearing M, Kotecki L, Marron Fernandez de Velasco E, Fajardo-Serrano A, Chung HJ, Lujan R, et al. Repeated cocaine weakens GABA(B)-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron. 2013;80:159–70. (PMID: 24094109379364310.1016/j.neuron.2013.07.019)
Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8. (PMID: 21796121415550110.1038/nature10360)
Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron. 2011;72:231–43. (PMID: 22017986323636110.1016/j.neuron.2011.09.027)
Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. (PMID: 19396159396985910.1038/nature07991)
Kim H, Ahrlund-Richter S, Wang X, Deisseroth K, Carlen M. Prefrontal Parvalbumin neurons in control of attention. Cell. 2016;164:208–18. (PMID: 26771492471518710.1016/j.cell.2015.11.038)
Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28:771–84. (PMID: 1555568310.1016/j.neubiorev.2004.09.006)
Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000;20:4320–4. (PMID: 10818167677264110.1523/JNEUROSCI.20-11-04320.2000)
Roth BL. DREADDs for Neuroscientists. Neuron. 2016;89:683–94. (PMID: 26889809475965610.1016/j.neuron.2016.01.040)
Lin G, McKay G, Midha KK. Characterization of metabolites of clozapine N-oxide in the rat by micro-column high performance liquid chromatography/mass spectrometry with electrospray interface. J Pharm Biomed Anal. 1996;14:1561–77. (PMID: 887786410.1016/0731-7085(96)01738-4)
Ilg AK, Enkel T, Bartsch D, Bahner F. Behavioral effects of acute systemic low-dose clozapine in wild-type rats: implications for the use of DREADDs in behavioral neuroscience. Front Behav Neurosci. 2018;12:173. (PMID: 30154702610232510.3389/fnbeh.2018.00173)
James AS, Chen JY, Cepeda C, Mittal N, Jentsch JD, Levine MS, et al. Opioid self-administration results in cell-type specific adaptations of striatal medium spiny neurons. Behav Brain Res. 2013;256:279–83. (PMID: 2396858910.1016/j.bbr.2013.08.009)
Panlilio LV, Schindler CW. Self-administration of remifentanil, an ultra-short acting opioid, under continuous and progressive-ratio schedules of reinforcement in rats. Psychopharmacology. 2000;150:61–6. (PMID: 1086797710.1007/s002130000415)
Panlilio LV, Secci ME, Schindler CW, Bradberry CW. Choice between delayed food and immediate opioids in rats: treatment effects and individual differences. Psychopharmacology. 2017;234:3361–73. (PMID: 28868576566417610.1007/s00213-017-4726-2)
Blair G, Wells C, Ko A, Modarres J, Pace C, Davis JM, et al. Dextromethorphan and bupropion reduces high level remifentanil self-administration in rats. Pharm Biochem Behav. 2020;193:172919. (PMID: 10.1016/j.pbb.2020.172919)
Levin ED, Wells C, Hawkey A, Holloway Z, Blair G, Vierling A, et al. Amitifadine, a triple reuptake inhibitor, reduces self-administration of the opiate remifentanil in rats. Psychopharmacology. 2020;237:1681–89. (PMID: 32125484724437910.1007/s00213-020-05489-w)
Daglish MR, Weinstein A, Malizia AL, Wilson S, Melichar JK, Britten S, et al. Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. Am J Psychiatry. 2001;158:1680–6. (PMID: 1157900210.1176/appi.ajp.158.10.1680)
Suh JJ, Langleben DD, Ehrman RN, Hakun JG, Wang Z, Li Y, et al. Low prefrontal perfusion linked to depression symptoms in methadone-maintained opiate-dependent patients. Drug Alcohol Depend. 2009;99:11–7. (PMID: 1867487110.1016/j.drugalcdep.2008.06.007)
Otis JM, Namboodiri VM, Matan AM, Voets ES, Mohorn EP, Kosyk O, et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature. 2017;543:103–07. (PMID: 28225752577293510.1038/nature21376)
West EA, Niedringhaus M, Ortega HK, Haake RM, Frohlich F, Carelli RM. Noninvasive brain stimulation rescues cocaine-induced prefrontal hypoactivity and restores flexible behavior. Biol Psychiatry. 2021;89:1001–11.
Donnelly NA, Holtzman T, Rich PD, Nevado-Holgado AJ, Fernando AB, Van Dijck G, et al. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome. PloS One. 2014;9:e111300. (PMID: 25333512420509710.1371/journal.pone.0111300)
Feil J, Sheppard D, Fitzgerald PB, Yucel M, Lubman DI, Bradshaw JL. Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neurosci Biobehav Rev. 2010;35:248–75. (PMID: 2022326310.1016/j.neubiorev.2010.03.001)
Smith RJ, Laiks LS. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:11–21. (PMID: 2888718210.1016/j.pnpbp.2017.09.003)
Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology. 1999;146:373–90. (PMID: 1055048810.1007/PL00005483)
Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9. (PMID: 10.1038/nn157916251991)
Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019;44:465–77. (PMID: 3029308710.1038/s41386-018-0234-2)
Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci. 2011;14:420–2. (PMID: 21336273307792710.1038/nn.2758)
Bossert JM, Stern AL, Theberge FR, Marchant NJ, Wang HL, Morales M, et al. Role of projections from ventral medial prefrontal cortex to nucleus accumbens shell in context-induced reinstatement of heroin seeking. J Neurosci. 2012;32:4982–91. (PMID: 22492053333516910.1523/JNEUROSCI.0005-12.2012)
Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28:6046–53. (PMID: 18524910258536110.1523/JNEUROSCI.1045-08.2008)
Schmidt ED, Voorn P, Binnekade R, Schoffelmeer AN, De Vries TJ. Differential involvement of the prelimbic cortex and striatum in conditioned heroin and sucrose seeking following long-term extinction. Eur J Neurosci. 2005;22:2347–56. (PMID: 1626267310.1111/j.1460-9568.2005.04435.x)
Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci. 2007;27:12655–63. (PMID: 18003845211735010.1523/JNEUROSCI.3926-07.2007)
Bossert JM, Wihbey KA, Pickens CL, Nair SG, Shaham Y. Role of dopamine D(1)-family receptors in dorsolateral striatum in context-induced reinstatement of heroin seeking in rats. Psychopharmacology. 2009;206:51–60. (PMID: 19506837314515510.1007/s00213-009-1580-x)
Hearing MC, Jedynak J, Ebner SR, Ingebretson A, Asp AJ, Fischer RA, et al. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc Natl Acad Sci USA. 2016;113:757–62. (PMID: 26739562472547210.1073/pnas.1519248113)
Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev. 2010;35:276–84. (PMID: 1993271110.1016/j.neubiorev.2009.11.016)
Van den Oever MC, Lubbers BR, Goriounova NA, Li KW, Van der Schors RC, Loos M, et al. Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology. 2010;35:2120–33. (PMID: 20592718305529510.1038/npp.2010.90)
Johnson AR, Thibeault KC, Lopez AJ, Peck EG, Sands LP, Sanders CM, et al. Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement. Neuropsychopharmacology. 2019;44:1189–97.
Lacy RT, Strickland JC, Feinstein MA, Robinson AM, Smith MA. The effects of sex, estrous cycle, and social contact on cocaine and heroin self-administration in rats. Psychopharmacol (Berl). 2016;233:3201–10. (PMID: 10.1007/s00213-016-4368-9)
Lacy RT, Austin BP, Strickland JC. The influence of sex and estrous cyclicity on cocaine and remifentanil demand in rats. Addict Biol. 2019;25:12717–26.
Becker JB, Perry AN, Westenbroek C. Sex differences in the neural mechanisms mediating addiction: a new synthesis and hypothesis. Biol Sex Differ. 2012;3:14. (PMID: 22676718372449510.1186/2042-6410-3-14)
Becker JB, Hu M. Sex differences in drug abuse. Front Neuroendocrinol. 2008;29:36–47. (PMID: 1790462110.1016/j.yfrne.2007.07.003)
Serdarevic M, Striley CW, Cottler LB. Sex differences in prescription opioid use. Curr Opin psychiatry. 2017;30:238–46. (PMID: 28426545567503610.1097/YCO.0000000000000337)
Kennedy AP, Epstein DH, Phillips KA, Preston KL. Sex differences in cocaine/heroin users: drug-use triggers and craving in daily life. Drug Alcohol Depend. 2013;132:29–37. (PMID: 23357742366412010.1016/j.drugalcdep.2012.12.025)
Unick GJ, Rosenblum D, Mars S, Ciccarone D. Intertwined epidemics: national demographic trends in hospitalizations for heroin- and opioid-related overdoses, 1993-2009. PloS One. 2013;8:e54496. (PMID: 23405084356616110.1371/journal.pone.0054496)
Cicero TJ, Aylward SC, Meyer ER. Gender differences in the intravenous self-administration of mu opiate agonists. Pharm Biochem Behav. 2003;74:541–9. (PMID: 10.1016/S0091-3057(02)01039-0)
Lynch WJ, Carroll ME. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology. 1999;144:77–82. (PMID: 1037962710.1007/s002130050979)
Reiner DJ, Lofaro OM, Applebey SV, Korah H, Venniro M, Cifani C, et al. Role of projections between piriform cortex and orbitofrontal cortex in relapse to fentanyl seeking after palatable food choice-induced voluntary abstinence. J Neurosci. 2020;40:2485–97. (PMID: 32051327708352910.1523/JNEUROSCI.2693-19.2020)
Bossert JM, Kiyatkin EA, Korah H, Hoots JK, Afzal A, Perekopskiy D, et al. In a rat model of opioid maintenance, the G protein-biased Mu opioid receptor agonist TRV130 decreases relapse to oxycodone seeking and taking and prevents oxycodone-induced brain hypoxia. Biol Psychiatry. 2020;88:935–44. (PMID: 3230521610.1016/j.biopsych.2020.02.0147483192)
Townsend EA, Negus SS, Caine SB, Thomsen M, Banks ML. Sex differences in opioid reinforcement under a fentanyl vs. food choice procedure in rats. Neuropsychopharmacology. 2019;44:2022–29. (PMID: 30818323689862810.1038/s41386-019-0356-1)
Grant Information:
K99 DA038706 United States DA NIDA NIH HHS; R00 DA038706 United States DA NIDA NIH HHS
Substance Nomenclature:
P10582JYYK (Remifentanil)
Entry Date(s):
Date Created: 20210520 Date Completed: 20210827 Latest Revision: 20220902
Update Code:
20240104
PubMed Central ID:
PMC8358018
DOI:
10.1038/s41386-021-01028-z
PMID:
34012018
Czasopismo naukowe
Opioid-based drugs are frequently used for pain management in both males and females despite the known risk of prefrontal cortex dysfunction and cognitive impairments. Although poorly understood, loss of cognitive control following chronic drug use has been linked to decreased activation of frontal cortex regions. Here, we show that self-administration of the potent opioid, remifentanil, causes a long-lasting hypoactive basal state evidenced by a decrease in ex vivo excitability that is paralleled by an increase in firing capacity of layer 5/6 pyramidal neurons in the prelimbic, but not infralimbic region of the medial prefrontal cortex. This phenomenon was observed in females after as few as 5 days and up to 25-30 days of self-administration. In contrast, pyramidal neurons in males showed increased excitability following 10-16 days of self-administration, with hypoactive states arising only following 25-30 days of self-administration. The emergence of a hypoactive, but not hyperactive basal state following remifentanil self-administration aligned with deficits in cognitive flexibility as assessed using an operant-based attentional set-shifting task. In females, the hypoactive basal state is driven by a reduction in excitatory synaptic transmission mediated by AMPA-type glutamate receptors. Alternatively, hyper- and hypoactive states in males align selectively with decreased and increased GABA B signaling, respectively. Chemogenetic compensation for this hypoactive state prior to testing restored cognitive flexibility, basal hypoactive state, and remifentanil-induced plasticity. These data define cellular and synaptic mechanisms by which opioids impair prefrontal function and cognitive control; indicating that interventions aimed at targeting opioid-induced adaptations should be tailored based on biological sex.
(© 2021. The Author(s), under exclusive licence to American College of Neuropsychopharmacology.)
Comment in: Neuropsychopharmacology. 2021 Sep;46(10):1707-1708. (PMID: 34127798)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies